

Research

Differences in the number of de novo mutations between individuals are due to small family-specific effects and stochasticity 1513
 Jakob M. Goldmann, Juliet E. Hampstead, Wendy S.W. Wong, Amy B. Wilfert, Tychele N. Turner, Marianne A. Jonker, Raphael Bernier, Martijn A. Huynen, Evan E. Eichler, Joris A. Veltman, George L. Maxwell, and Christian Gilissen

Parental methylome reprogramming in human uniparental blastocysts reveals germline memory transition 1519
 Jiawei Xu, Yimin Shu, Guidong Yao, Yu Zhang, Wenbin Niu, Yile Zhang, Xueshan Ma, Haixia Jin, Fuli Zhang, Senlin Shi, Yang Wang, Wenyan Song, Shanjun Dai, Luyao Cheng, Xiangyang Zhang, Wei Xie, Aaron J. Hsueh, and Yingpu Sun

Transposable elements and their KZFP controllers are drivers of transcriptional innovation in the developing human brain 1531^{OA}
 Christopher J. Playfoot, Julien Duc, Shaoline Sheppard, Sagane Dind, Alexandre Coudray, Evarist Planet, and Didier Trono

Ligand-induced native G-quadruplex stabilization impairs transcription initiation 1546
 Conghui Li, Honghong Wang, Zhihang Yin, Pingping Fang, Ruijing Xiao, Ying Xiang, Wen Wang, Qiuizi Li, Beili Huang, Jian Huang, and Kaiwei Liang

Genome-wide variability in recombination activity is associated with meiotic chromatin organization 1561^{OA}
 Xiaofan Jin, Geoff Fudenberg, and Katherine S. Pollard

The hourglass model of evolutionary conservation during embryogenesis extends to developmental enhancers with signatures of positive selection 1573^{OA}
 Jialin Liu, Rebecca R. Viales, Pierre Khoury, James P. Reddington, Charles Girardot, Eileen E.M. Furlong, and Marc Robinson-Rechavi

Temperature dependence of spontaneous mutation rates 1582
 Ann-Marie Waldvogel and Markus Pfenninger

Single worm transcriptomics identifies a developmental core network of oscillating genes with deep conservation across nematodes 1590
 Shuai Sun, Christian Rödelsperger, and Ralf J. Sommer

Mutability of mononucleotide repeats, not oxidative stress, explains the discrepancy between laboratory-accumulated mutations and the natural allele-frequency spectrum in *C. elegans* 1602
 Moein Rajaei, Ayush Shekhar Saxena, Lindsay M. Johnson, Michael C. Snyder, Timothy A. Crombie, Robyn E. Tanny, Erik C. Andersen, Joanna Joyner-Matos, and Charles F. Baer

(continued)

Crossover-active regions of the wheat genome are distinguished by DMCI, the chromosome axis, H3K27me3, and signatures of adaptation **1614**

Andrew J. Tock, Daniel M. Holland, Wei Jiang, Kim Osman, Eugenio Sanchez-Moran, James D. Higgins, Keith J. Edwards, Cristobal Uauy, F. Chris H. Franklin, and Ian R. Henderson

Methods

Inferring genes that escape X-Chromosome inactivation reveals important contribution of variable escape genes to sex-biased diseases **1629**

Renan Sauteraud, Jill M. Stahl, Jesica James, Marisa Englebright, Fang Chen, Xiaowei Zhan, Laura Carrel, and Dajiang J. Liu

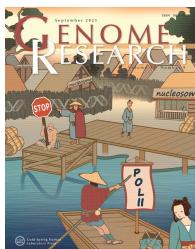
Sequence-based correction of barcode bias in massively parallel reporter assays **1638**

Dongwon Lee, Ashish Kapoor, Changhee Lee, Michael Mudgett, Michael A. Beer, and Aravinda Chakravarti

A universal framework for detecting *cis*-regulatory diversity in DNA regions **1646**

Anushua Biswas and Leelavati Narlikar

Resources


A ChIP-exo screen of 887 Protein Capture Reagents Program transcription factor antibodies in human cells **1663**

William K.M. Lai, Luca Mariani, Gerson Rothschild, Edwin R. Smith, Bryan J. Venters, Thomas R. Blanda, Prashant K. Kuntala, Kylie Bocklund, Joshua Mairose, Sarah N. Dweikat, Katelyn Mistretta, Matthew J. Rossi, Daniela James, James T. Anderson, Sabrina K. Phanor, Wanwei Zhang, Zibo Zhao, Avani P. Shah, Katherine Novitzky, Eileen McAnarney, Michael-C. Keogh, Ali Shilatifard, Uttiya Basu, Martha L. Bulyk, and B. Franklin Pugh

Global patterns of enhancer activity during sea urchin embryogenesis assessed by eRNA profiling **1680**

Jian Ming Khor, Jennifer Guerrero-Santoro, William Douglas, and Charles A. Ettensohn

^{OA}Open Access paper

Cover A boat docking process represents the participation of G-quadruplex (G4) in the early stages of gene transcription. The tangled mass of DNA (fence) and nucleosomes (huts) resemble an island. During transcription, promoter double-stranded DNA (the long platform at the back) is exposed and forms the dock for the binding of transcription factors. Along with double-stranded DNA melting and single-stranded DNA opening, G4 structures (the front three-layered platform) are formed in the promoter regions. After stabilization by G4-targeted ligands (the people occupying the front three-layered platform), the stabilized G4 inhibits the loading of general transcription factors, such as TFIID complex, GTF2B, and RNA polymerase II (Pol II, the boat on its way to promoter region). This process results in the impairment of transcription initiation. (Cover illustration drawn by Jinbo Li [zcool.com.cn/u/15625898], based on a concept by Kaiwei Liang, Conghui Li, and Jinbo Li. [For details, see Li et al., pp. 1546–1560.])