

Research

LCM-seq reveals unique transcriptional adaptation mechanisms of resistant neurons and identifies protective pathways in spinal muscular atrophy 1083^{OA}
 Susanne Nicterwitz, Jik Nijssen, Helena Storvall, Christoph Schweingruber, Laura Helen Comley, Ilary Alldodi, Mirjam van der Lee, Qiaolin Deng, Rickard Sandberg, and Eva Hedlund

Diploid genome architecture revealed by multi-omic data of hybrid mice 1097
 Zhijun Han, Kairong Cui, Katarzyna Placek, Ni Hong, Chengqi Lin, Wei Chen, Keji Zhao, and Wenfei Jin

ADAR-deficiency perturbs the global splicing landscape in mouse tissues 1107^{OA}
 Utkarsh Kapoor, Konstantin Licht, Fabian Amman, Tobias Jakobi, David Martin, Christoph Dieterich, and Michael F. Jantsch

PR-DUB maintains the expression of critical genes through FOXK1/2- and ASXL1/2/3-dependent recruitment to chromatin and H2AK119ub1 deubiquitination 1119
 Petros Kolovos, Koutarou Nishimura, Aditya Sankar, Simone Sidoli, Paul A. Cloos, Kristian Helin, and Jesper Christensen

Xylem systems genetics analysis reveals a key regulator of lignin biosynthesis in *Populus deltoides* 1131
 Kelly M. Balmant, Jerald D. Noble, Filipe C. Alves, Christopher Dervinis, Daniel Conde, Henry W. Schmidt, Ana I. Vazquez, William B. Barbazuk, Gustavo de los Campos, Marcio F.R. Resende Jr., and Matias Kirst

Methods

Detection and characterization of jagged ends of double-stranded DNA in plasma 1144^{OA}
 Peiyong Jiang, Tingting Xie, Spencer C. Ding, Ze Zhou, Suk Hang Cheng, Rebecca W.Y. Chan, Wing-Shan Lee, Wenlei Peng, John Wong, Vincent W.S. Wong, Henry L.Y. Chan, Stephen L. Chan, Liona C.Y. Poon, Tak Y. Leung, K.C. Allen Chan, Rossa W.K. Chiu, and Y.M. Dennis Lo

Detection of simple and complex de novo mutations with multiple reference sequences 1154^{OA}
 Kiran V. Garimella, Zamin Iqbal, Michael A. Krause, Susana Campino, Mihir Kekre, Eleanor Drury, Dominic Kwiatkowski, Juliana M. Sá, Thomas E. Wellem, and Gil McVean

A pedigree-based prediction model identifies carriers of deleterious de novo mutations in families with Li-Fraumeni syndrome 1170^{OA}
 Fan Gao, Xuedong Pan, Elissa B. Dodd-Eaton, Carlos Vera Recio, Matthew D. Montierth, Jasmina Bojadzieva, Phuong L. Mai, Kristin Zelley, Valen E. Johnson, Danielle Braun, Kim E. Nichols, Judy E. Garber, Sharon A. Savage, Louise C. Strong, and Wenyi Wang

(continued)

TransBorrow: genome-guided transcriptome assembly by borrowing assemblies from different assemblers

1181^{OA}

Ting Yu, Zengchao Mu, Zhaoyuan Fang, Xiaoping Liu, Xin Gao, and Juntao Liu

RNA-Bloom enables reference-free and reference-guided sequence assembly for single-cell transcriptomes

1191^{OA}

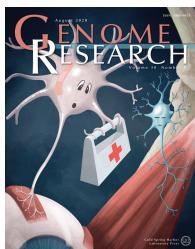
Ka Ming Nip, Readman Chiu, Chen Yang, Justin Chu, Hamid Mohamadi, René L. Warren, and Inanc Birol

SNP-based quantitative deconvolution of biological mixtures: application to the detection of cows with subclinical mastitis by whole-genome sequencing of tank milk

1201

Wouter Coppelters, Latifa Karim, and Michel Georges

Resource


LEMMI: a continuous benchmarking platform for metagenomics classifiers

1208^{OA}

Mathieu Seppey, Mosè Manni, and Evgeny M. Zdobnov

^{OA}Open Access paper

Cover *Survival kit for resistance.* Spinal muscular atrophy (SMA) is caused by the loss of the ubiquitously expressed survival motor neuron 1 (SMN1) protein and is characterized by the selective degeneration of somatic motor neurons. However, some motor neuron groups, including ocular motor neurons which regulate eye movement, are for unknown reasons resilient to degeneration in SMA. In this issue, to reveal mechanisms of neuronal vulnerability and resilience in SMA, the dynamics of the transcriptome in response to the loss of SMN1 using RNA sequencing of resilient and vulnerable neuron groups, isolated from a mouse model of SMA, was investigated. This research determined that all somatic motor neurons, independent of their vulnerability, showed a TRP53-mediated stress response. However, ocular motor neurons presented unique disease-adaptation mechanisms that could explain their resilience. The illustration depicts that ocular motor neurons have an intrinsic survival kit which can patch them up and, thus, render them resilient to degeneration in SMA. This unique survival kit contains factors that can also help vulnerable neurons survive the loss of SMN1. (Cover art © Mattias Karlén, 2020, mail@mattiaskarlen.se. [For details, see Nichterwitz et al., pp. 1083–1096.])

