

The Complete Solution For Automated Fragment Analysis

In the race to identify genes of interest, you need a reliable way to screen samples rapidly and accurately. The model approach combines PCR-based markers such as microsatellites with Applied Biosystems' four-color fluorescent dye technology. Our easy-to-use Model 373 DNA Analysis System and GENESCAN™ 672 fragment analysis software provide accurate, automated sizing of microsatellites, including the widely used two-base repeats.

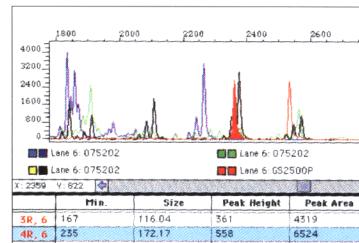
In-Lane Controls For Precise Sizing

Only our proven four-dye, one-lane method gives you the precision necessary to score small differences in PCR fragment sizes. You simply run our prelabeled size control in the same lanes with samples. Our GENESCAN software compares sample bands against this in-lane control to size PCR fragments precisely. This in-lane standard automatically controls for lane-to-lane and gel-to-gel variation.

High Throughput Accelerates Research

Our multicolor labeling technology also lets you combine samples to investigate many loci per lane. This unprecedented throughput can dramatically advance your research. According to one researcher, "A single project with at least 500 individuals would take years to analyze by radioactive methods, but with ...the ability to multiplex, we can do

the same project in a matter of three to four months."^{*}


Streamlined Data

Handling

When you start generating 10 to 20 times more data per gel, you'll appreciate GENESCAN's unequalled analytical performance and ease of use. This Macintosh-based program automatically collects, reports and analyzes data directly from the Model 373. The digitized information is easily transferred for further analysis.

Our versatile technology also brings unsurpassed precision to fragment quantitation and sequencing. At Applied Biosystems, we're committed to providing fundamental technologies to support a full spectrum of applications for genetic analysis—now and in the future.

To receive literature on the Model 373, GENESCAN, and linkage analysis applications, call Applied Biosystems at: U.S. (800) 345-5224, Canada (800) 668-6913.

No other system offers so many options for viewing and evaluating data.

 Applied Biosystems

A Division of Perkin-Elmer Corporation

*Betsy Nanthakumar, Director, DNA Analysis Facility, Johns Hopkins University. © 1993 Applied Biosystems, Inc., a Division of The Perkin-Elmer Corporation. GENESCAN™ is a trademark of Applied Biosystems, Inc., a Division of The Perkin-Elmer Corporation. The GeneAmp™ PCR Process is covered by U.S. Patent Nos. 4,683,202, 4,683,195, 4,800,159 and 4,965,188 owned by Hoffmann-LaRoche Inc. and by issued and pending patents owned by F.Hoffmann-LaRoche Ltd. Macintosh® is a registered trademark of Apple Computer, Inc.

June, 1994
Volume 3, Number 6

Editors

David Bentley
Sanger Centre
Richard Gibbs

Baylor College of Medicine
Eric Green

Washington University School of Medicine
Richard Myers

Stanford University School of Medicine

Editorial Board

Rakesh Anand

Zeneca Pharmaceuticals
Johannes Bos

University of Utrecht
Anne Bowcock

University of Texas Southwestern Medical Center

Jeff Chamberlain

University of Michigan Medical School
Nicholas Dracopoli

National Center for Human Genome Research
Joe Ecker

University of Pennsylvania
Ray Fenwick

Dianon Systems, Inc.

Kenshi Hayashi

National Cancer Center Research Institute, Tokyo

Bernhard Horsthemke
University of Essen
Pieter de Jong

Lawrence Livermore National Laboratory
David Kemp

Menzies School of Health Research
Mary-Claire King

University of California, Berkeley
Ulf Landegren

University of Uppsala Medical Center
Doug Marchuk

University of Michigan Medical School
Chris Mathew

UMDS Guy's & St. Thomas' Medical and Dental School
David Nelson

Baylor College of Medicine
Debbie Nickerson

University of Washington School of Medicine
Svante Pääbo

University of Munich
Lena Peltonen

University of Helsinki
Eric Spitzer

SUNY at Stony Brook
Lap-Chee Tsui

Hospital for Sick Children, Toronto

Rick Wilson

Washington University School of Medicine

Steven Wolinsky

Northwestern University School of Medicine

Maria Zapp

University of Massachusetts Medical Center

RESEARCH

317 **Rapid RT-PCR Amplification from Limited Cell Numbers**
S. Edmonds, J. Kirk, A. Lee, and J. Radich

320 **Specific Immunoglobulin cDNA Clones Produced from Hybridoma Cell Lines and Murine Spleen Fragment Cultures by 3SR Amplification**
C.A. Stillman, P.J. Linton, P.J. Koutz, D.J. Decker, N.R. Klinman, and T.R. Gingeras

332 **Improved Quantitative PCR Using Nested Primers**
Lawrence A. Haff

338 **Cloning and Analysis of PCR-generated DNA Fragments**
Gina L. Costa, Albert Grafsky, and Michael P. Weiner

346 **An Internally Controlled Virion PCR for the Measurement of HIV-1 RNA in Plasma**
V. Natarajan, R.J. Plishka, E.W. Scott, H.C. Lane, and N.P. Salzman

351 **Characterization of Human AFLP Systems Apolipoprotein B, Phenylalanine Hydroxylase, and D1S80**
David Latorra, Clay M. Stern, and Moses S. Schanfield

TECHNICAL TIPS

359 Optimized Conditions for Cycle Sequencing of PCR Products
Joseph H. Horton, Michael D. Hagen, and Minoru S.H. Ko

361 Evaluation of Bone Marrow Transplantation Efficiency by Competitive PCR on Y Sequences
Sylvie Patri, Laurence Daheron, Alain Kitzis, and Jean-Claude Chomel

365 Inhibitory Effect of Salivary Fluids on PCR: Potency and Removal
A.S. Ochert, A.W. Boulter, W. Birnbaum, N.W. Johnson, and C.G. Teo

369 Quantitative PCR of Bacteriophage λ DNA Using a Second-Generation Thermocycler
Doris M. Kuehnelt, Elisabeth Kukovetz, Herwig P. Hofer, and Rudolf J. Schaur

(continued)

Editorial Staff

Nadine Dumser, Technical Editor
Valerie Nicolette, Production Editor
Doris Lawrence, Secretary
Jim Suddaby, Design

Advertising

Nancy Kuhle

372 Rapid Preparation of *Thermus flavus* DNA Polymerase
Robert A. Harrell II and Ronald P. Hart

376 Selective Detection of Hepatitis B Virus RNA by PCR
Richard Sallie

379 **Volume 3, Advertisers**

380 **Volume 3, Subject Index**

386 **Volume 3, Author Index**

MANUAL SUPPLEMENT

389 **Getting Started: A PCR Primer**

391 *Contents*