

Forefront of Gene Therapy Manufacturing

FROM BENCH TO BEDSIDE

AFFORDABLE

Providing low-cost, high-quality vectors for use in cells, small/large animal models and in the clinic. Scalable proprietary transfection process, providing the benefit of higher cost-effectiveness.

RESEARCH TOOLS

High Titer, High Purity. Rapid turn around times. Additional research tools include AAV Biosensors - GCaMP, RCaMP, CaMPARI, jRGECO1; ORF clones, ZIKA, viral controls.

PRE-CLINICAL/CLINICAL

Providing custom, on-demand virus for pre-clinical and clinical applications. Additional services: Master and Working cell banking, Aseptic filling, QC testing. Compliant with US FDA and EU EMA regulatory requirements.

Feature Viral Vector Application Note.

Discover the advantage of Vigene's viral-tools and technologies to help meet your basic, preclinical, and/or clinical application needs. Specializing in **AAV**, **Adenovirus** and **Lentivirus** gene delivery.

DOWNLOAD FREE
APPLICATION NOTE

vigenebio.com/virus-manufacturing

 Vigene Biosciences
Excellence in Gene Delivery

1-800-485-5808
vigenegmp.com
vigenebio.com

More data. One reaction.

Totally on-target assay design. The most intelligent targeted sequencing assay design ever. With comprehensive coverage of critical hotspot SNVs, contiguous tiled regions in coding sequences, and intron-exon boundaries in a revolutionary fast, simple, single-tube workflow, characterization and screening of your targets of interest is finally within reach. And on-target.

**Accel-Amplicon™
Custom NGS Panels**

Swift
BIOSCIENCES™

swiftbiosci.com

Gene panels on demand, how and when you want them

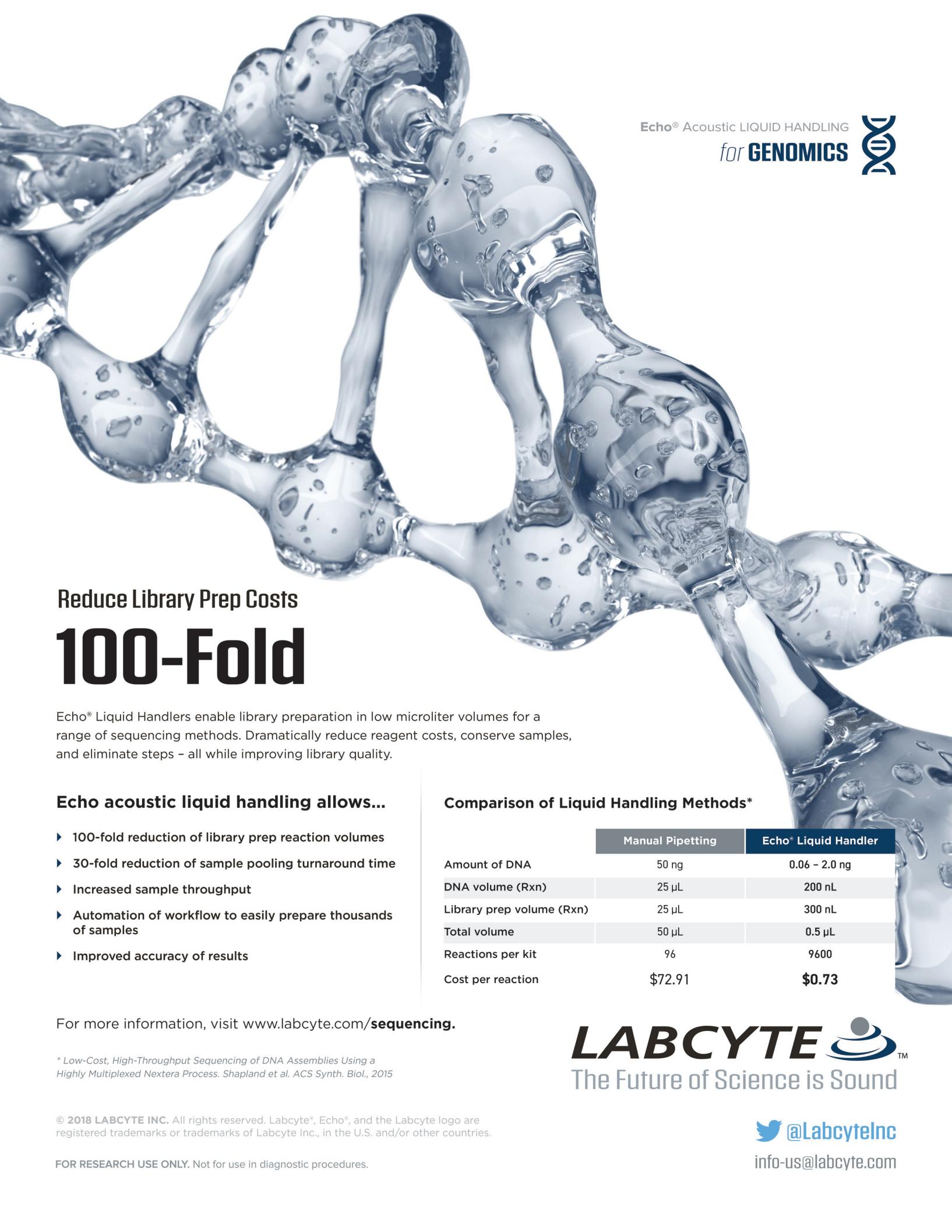
Ion AmpliSeq On-Demand Panels help you get more from targeted next-generation sequencing

- **Now more selection**—build custom panels from a growing catalog of **over 5,000 pretested genes** most relevant in inherited disease research*
- **Now more sizes**—order the exact quantity you need: 8, 24, 32, and 96 reactions per pack

With practical pack sizes that help lower up-front cost, and a powerful content selection engine that automates optimal gene selection, Ion AmpliSeq™ On-Demand Panels help you do targeted sequencing in your own lab, your own way.

Do targeted sequencing your way at ampliseq.com

Learn more at thermofisher.com/ampliseqondemand


Dovetail
GENOMICS

REDEFINE THE GENOME

WITH DOVETAIL™ PROXIMITY LIGATION TECHNOLOGIES

- ▼ Profile 3-D chromatin features
- ▼ Build chromosome-level assemblies
- ▼ Visualize all large variants from FFPE

Visit dovetailgenomics.com/gr to learn more.

A large, abstract image of blue liquid droplets and bubbles on a white background, occupying the left two-thirds of the page.

Echo® Acoustic LIQUID HANDLING

for GENOMICS

Reduce Library Prep Costs

100-Fold

Echo® Liquid Handlers enable library preparation in low microliter volumes for a range of sequencing methods. Dramatically reduce reagent costs, conserve samples, and eliminate steps – all while improving library quality.

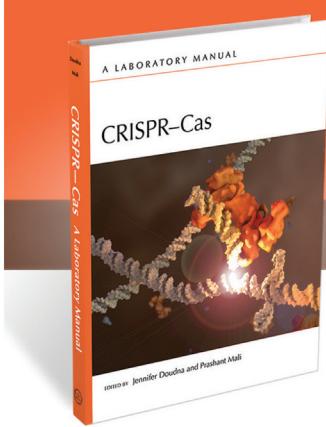
Echo acoustic liquid handling allows...

- ▶ 100-fold reduction of library prep reaction volumes
- ▶ 30-fold reduction of sample pooling turnaround time
- ▶ Increased sample throughput
- ▶ Automation of workflow to easily prepare thousands of samples
- ▶ Improved accuracy of results

Comparison of Liquid Handling Methods*

	Manual Pipetting	Echo® Liquid Handler
Amount of DNA	50 ng	0.06 – 2.0 ng
DNA volume (Rxn)	25 µL	200 nL
Library prep volume (Rxn)	25 µL	300 nL
Total volume	50 µL	0.5 µL
Reactions per kit	96	9600
Cost per reaction	\$72.91	\$0.73

For more information, visit www.labcyte.com/sequencing.


* Low-Cost, High-Throughput Sequencing of DNA Assemblies Using a Highly Multiplexed Nextera Process. Shapland et al. ACS Synth. Biol., 2015

© 2018 LABCYTE INC. All rights reserved. Labcyte®, Echo®, and the Labcyte logo are registered trademarks or trademarks of Labcyte Inc., in the U.S. and/or other countries.

FOR RESEARCH USE ONLY. Not for use in diagnostic procedures.

LABCYTE
The Future of Science is Sound

 [@LabcyteInc](https://twitter.com/LabcyteInc)
info-us@labcyte.com

CRISPR-Cas

A Laboratory Manual

The essential guide to CRISPR-Cas

Edited by Jennifer Doudna, *University of California, Berkeley*;
Prashant Mali, *University of California, San Diego*

The development of CRISPR-Cas technology is revolutionizing biology. Based on machinery bacteria use to target foreign nucleic acids, these powerful techniques allow investigators to edit nucleic acids and modulate gene expression more rapidly and accurately than ever before.

Featuring contributions from leading figures in the CRISPR-Cas field, this laboratory manual presents a state-of-the-art guide to the technology. It includes step-by-step protocols for applying CRISPR-Cas-based techniques in various systems, including yeast, zebrafish, *Drosophila*, mice, and cultured cells (e.g., human pluripotent stem cells). The contributors cover web-based tools and approaches for designing guide RNAs that precisely target genes of interest, methods for preparing and delivering CRISPR-Cas reagents into cells, and ways to screen for cells that harbor the desired genetic changes. Strategies for optimizing CRISPR-Cas in each system—especially for minimizing off-target effects—are also provided.

Authors also describe other applications of the CRISPR-Cas system, including its use for regulating genome activation and repression, and discuss the development of next-generation CRISPR-Cas tools. The book is thus an essential laboratory resource for all cell, molecular, and developmental biologists, as well as biochemists, geneticists, and all who seek to expand their biotechnology toolkits.

2016, 192 pages, illustrated (20 color, 4 B&W), index

Paperback: Print Book + eBook \$210

Print Book \$110

eBook \$100

ISBN 978-1-621821-31-1

Hardcover: Print Book + eBook \$250

Print Book \$150

eBook \$100

ISBN 978-1-621821-30-4

Visit our website for special sale pricing!

eBook available exclusively at www.cshlpress.org

Contents

Preface

CHAPTER 1 Overview of CRISPR-Cas9 Biology

INTRODUCTION
Overview of CRISPR-Cas9 Biology
Hannah K. Ratner, Timothy R. Sampson, and David S. Weiss

CHAPTER 2 Guide RNAs: A Glimpse at the Sequences that Drive CRISPR-Cas Systems

INTRODUCTION
Guide RNAs: A Glimpse at the Sequences that Drive CRISPR-Cas Systems

Alexandra E. Briner and Rudolphe Barrangou

PROTOCOL

Prediction and Validation of Native and Engineered Cas9 Guide Sequences
Alexandra E. Briner, Emily D. Henriksen, and Rudolphe Barrangou

CHAPTER 3 Characterization of Cas9-Guide RNA Orthologs

INTRODUCTION

Characterization of Cas9-Guide RNA Orthologs
Jonathan L. Braff, Stephanie J. Yaung, Kevin M. Esvelt, and George M. Church

PROTOCOL

Characterizing Cas9 Protospacer-Adjacent Motifs with High-Throughput Sequencing of Library Depletion Experiments
Jonathan L. Braff, Stephanie J. Yaung, Kevin M. Esvelt, and George M. Church

CHAPTER 4 Large-Scale Single Guide RNA Library Construction and Use for CRISPR-Cas-Based Genetic Screens

INTRODUCTION

Large-Scale Single Guide RNA Library Construction and Use for CRISPR-Cas9-Based Genetic Screens
Tim Wang, Eric S. Lander, and David M. Sabatini

PROTOCOLS

Single Guide RNA Library Design and Construction
Tim Wang, Eric S. Lander, and David M. Sabatini

Viral Packaging and Cell Culture for CRISPR-Based Screens
Tim Wang, Eric S. Lander, and David M. Sabatini

CHAPTER 5 Adeno-Associated Virus-Mediated Delivery of CRISPR-Cas Systems for Genome Engineering in Mammalian Cells

PROTOCOL

Adeno-Associated Virus-Mediated Delivery of CRISPR-Cas Systems for Genome Engineering in Mammalian Cells
Thomas Gaj and David V. Schaffer

CHAPTER 6 Detecting Single-Nucleotide Substitutions Induced by Genome Editing

INTRODUCTION

Detecting Single-Nucleotide Substitutions Induced by Genome Editing
Yuichiro Miyaoka, Amanda H. Chan, and Bruce R. Conklin

PROTOCOL

Using Digital Polymerase Chain Reaction to Detect Single-Nucleotide Substitutions Induced by Genome Editing
Yuichiro Miyaoka, Amanda H. Chan, and Bruce R. Conklin

CHAPTER 7 CRISPR-Cas9 Genome Engineering in *Saccharomyces cerevisiae* Cells

PROTOCOL

CRISPR-Cas9 Genome Engineering in *Saccharomyces cerevisiae* Cells
Owen W. Ryan, Snigdha Poddar, and Jamie H.D. Cate

CHAPTER 8 Cas9-Mediated Genome Engineering in *Drosophila melanogaster*

INTRODUCTION

Cas9-Mediated Genome Engineering in *Drosophila melanogaster*
Benjamin E. Housden and Norbert Perrimon

PROTOCOLS

Design and Generation of Donor Constructs for Genome Engineering in *Drosophila*
Benjamin E. Housden and Norbert Perrimon

Detection of Indel Mutations in *Drosophila* by High-Resolution Melt Analysis (HRMA)
Benjamin E. Housden and Norbert Perrimon

Design and Generation of *Drosophila* Single Guide RNA Expression Constructs
Benjamin E. Housden, Yanhui Hu, and Norbert Perrimon

CHAPTER 9 Optimization Strategies for the CRISPR-Cas9 Genome-Editing System

INTRODUCTION

Optimization Strategies for the CRISPR-Cas9 Genome-Editing System
Charles E. Vejnar, Miguel Moreno-Mateos, Daniel Cifuentes, Ariel A. Bazzini, and Antonio J. Giraldez

PROTOCOL

Optimized CRISPR-Cas9 System for Genome Editing in Zebrafish
Charles E. Vejnar, Miguel Moreno-Mateos, Daniel Cifuentes, Ariel A. Bazzini, and Antonio J. Giraldez

CHAPTER 10 Editing the Mouse Genome Using the CRISPR-Cas9 System

INTRODUCTION

Editing the Mouse Genome Using the CRISPR-Cas9 System
Adam Williams, Jorge Henao-Mejia, and Richard A. Flavell

PROTOCOL

Generation of Genetically Modified Mice Using the CRISPR-Cas9 Genome-Editing System
Jorge Henao-Mejia, Adam Williams, Anthony Rongvaux, Judith Stein, Cynthia Hughes, and Richard A. Flavell

CHAPTER 11 Genome Editing in Human Pluripotent Stem Cells

INTRODUCTION

Genome Editing in Human Pluripotent Stem Cells
Cory Smith, Zhaohui Ye, and Linzhao Cheng

PROTOCOL

A Method for Genome Editing in Human Pluripotent Stem Cells
Cory Smith, Zhaohui Ye, and Linzhao Cheng

CHAPTER 12 An Introduction to CRISPR Technology for Genome Activation and Repression in Mammalian Cells

INTRODUCTION

An Introduction to CRISPR Technology for Genome Activation and Repression in Mammalian Cells
Dan Du and Lei S. Qi

PROTOCOL

CRISPR Technology for Genome Activation and Repression in Mammalian Cells
Dan Du and Lei S. Qi

APPENDIX General Safety and Hazardous Material Information

INDEX

www.cshlpress.org

Ultra-pure dNTPs at unbeatable prices

Description

dNTPs contain dATP, dCTP, dGTP and dTTP (monosodium salts) at a concentration of 10mM or 100mM each in sterile deionized water at pH7.5, whose purity is up to 99.5% (HPLC). It is free of RNase and DNase, and suitable for any molecular biology application that requires pure deoxynucleotides, such as PCR, DNA sequencing, cDNA synthesis and nick translation.

Stability

All of our dNTPs are very stable – we guarantee 100% stability for 2 years from the date of purchase.

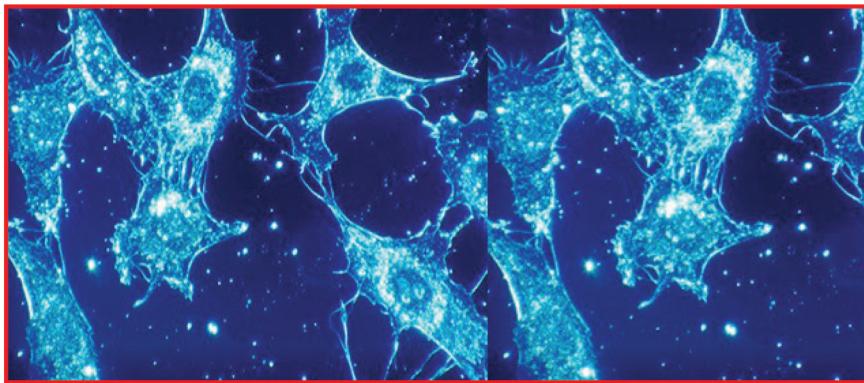
Features

- Ultra-pure: >99% by HPLC
- Reliable, consistent results
- Available both as ready-to-use mix and a set

Applications

- PCR and qPCR
- cDNA synthesis
- Primer extension
- DNA sequencing
- DNA labeling
- Mutagenesis

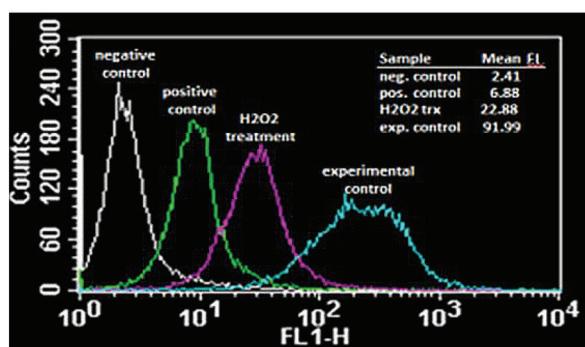
Quality control


- Purity assay (HPLC) >99%
- Free of pyrophosphate, DNA and RNA
- DNase, RNase and nickase free
- Tested for PCR, qPCR and RT-PCR

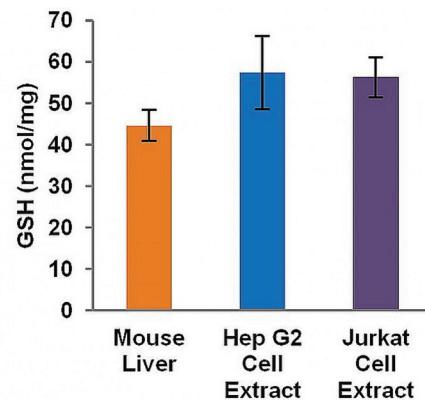
Beijing SBS Genetech Co. Ltd.

Fax: +86-10-82784290

Email: order@sbsbio.com Website: www.sbsbio.com


Ageing Cells? Senescence and Oxidative Stress Assay Kits

Reactive oxygen species (ROS), produced endogenously as a result of normal cellular metabolic functions or from external sources, pose a significant threat resulting in severe damage to DNA, protein, and lipids. Identifying specific forms of oxidative damage is often the focal point of interest in cancers and neuroscience research. BioVision has built a respectable selection of assay kits, measuring, and/or detecting key ROS players. Our vast set of kits include: Ethanol, Methanol, Hydrogen Peroxide, Nitrite, Glutathione, among other proteins/agents that function as antioxidant agents.


Key Features:

- **Non-radioactive, versatile assays** (Microplate)
- **Specific**, homogeneous assay
- **Sensitive**: colorimetric/fluorometric format
- **Convenient**: minimal sample preparation, fast protocols (< 2 hours)
- **Cost effective**: 100 assays; High Throughput Screening (HTS) compatible
- **Adaptable**: works with most of the commonly available instrumentations

A)

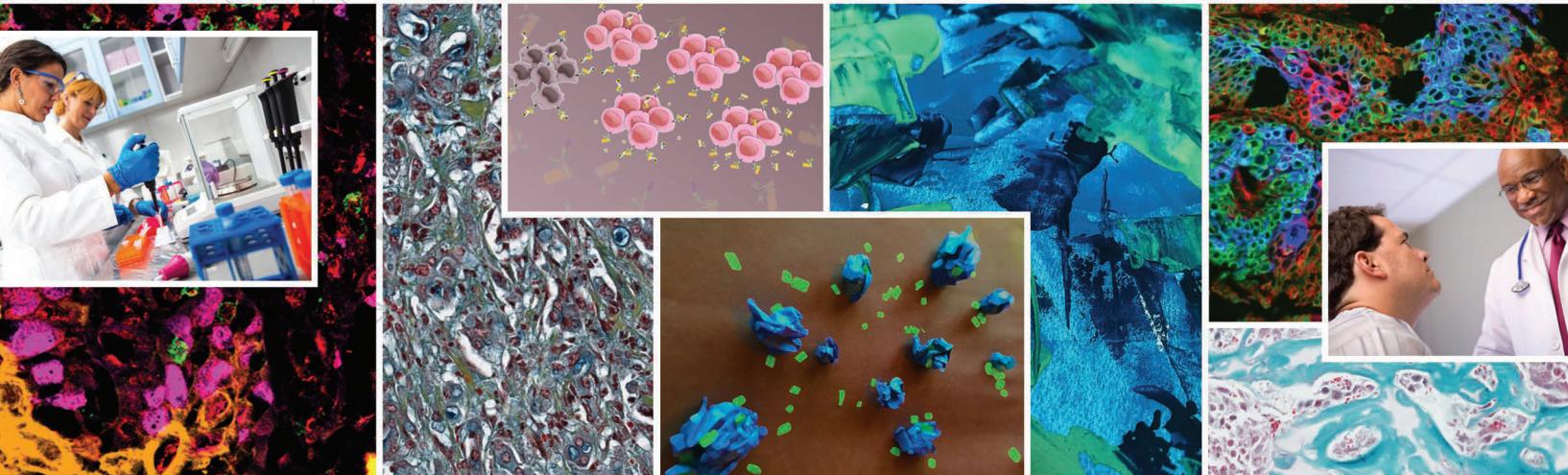
B)

Figures. A) Jurkat cells labeled and treated with ROS Inducer and 100 μ M of H_2O_2 according to **K936**. Facs results show significant increase in ROS production between treatments and controls. B) Measurement of GSH in Mouse Liver (10 μ g protein), Hep G2 Cell Extract (6 μ g protein) and Jurkat Cell Extract (10 μ g protein) using **K464**.

AACR

American Association
for Cancer Research®

ANNUAL MEETING 2018 ★ CHICAGO


APRIL 14-18, 2018 • MCCORMICK PLACE NORTH/SOUTH • CHICAGO, ILLINOIS • AACR.ORG • #AACR18

DRIVING INNOVATIVE CANCER SCIENCE TO PATIENT CARE

Join us in Chicago, for the latest innovative and inspiring cancer research from around the world...

THE AACR ANNUAL MEETING 2018!

The AACR Annual Meeting highlights the work of the best minds in cancer research and medicine from institutions all over the world. This meeting presents the many scientific discoveries across the breadth of cancer research – from population science and prevention, to cancer biology, translational, and clinical studies; to survivorship and advocacy. You will form new collaborations and learn how to apply exciting new concepts, tools, and techniques to your research. This year's program, with the theme of "Driving Innovative Cancer Science to Patient Care," will be a comprehensive, cutting-edge scientific event that you will not want to miss!

Become a Member! Join the AACR and receive a discount on registration.

We look forward to seeing you in Chicago!

6TH PLANT GENOMICS & GENE EDITING CONGRESS: EUROPE

Building on the success of our global Plant Science series of events, Global Engage is pleased to announce the co-located **6th Plant Genomics & Gene Editing Congress Europe** and **Partnerships in Biocontrol, Biostimulants & Microbiome Europe**.

Revolutionary breakthroughs, cost reductions in sequencing technology, successful sequencing of many plants, along with the improvement of biological data sets, have given plant scientists the tools and knowledge to make exciting developments to benefit agriculture.

This comprehensive two-day congress, featuring over 40 presentations across four tracks, will provide experts with an exceptional environment in which to explore the application of novel gene-editing technologies, CRISPR and other omics technologies.

Don't delay, register today:
www.global-engage.com/event/plant-genomics/#register

SPEAKERS INCLUDE:

RICHARD VISSER

Professor, Chair, and Head of Plant Breeding, Dean of Research, Wageningen University & Research, The Netherlands

BEAT KELLER

Professor, University of Zurich, Switzerland

GEORGE COUPLAND

Professor and Director of Plant Developmental Biology, Max Planck Institute for Plant Breeding, Germany

KARIN HERBERS

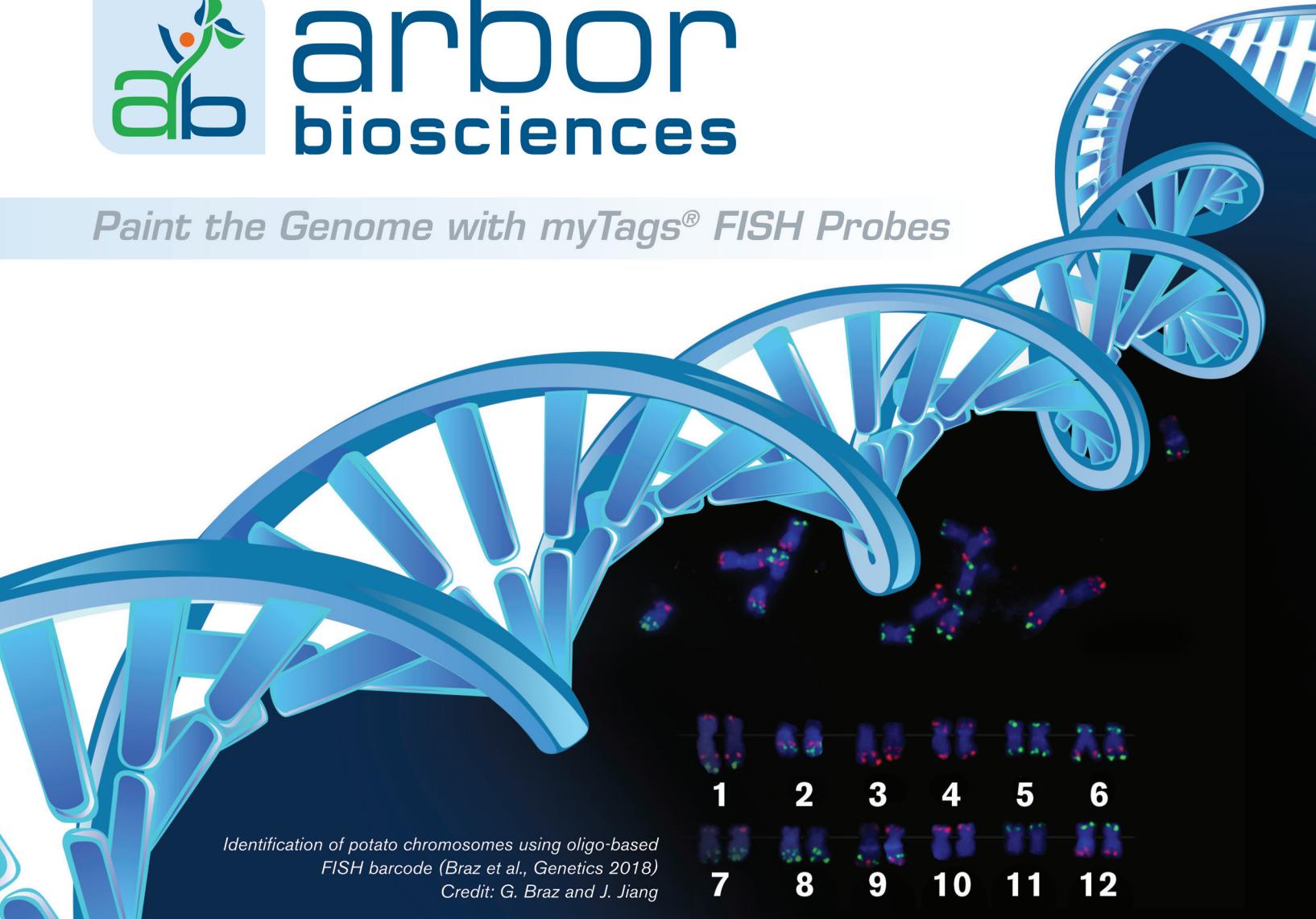
Vice President of Integrated Trait Knowledge, BASF Plant Science Research Management

GO EXPONENTIAL

Accelerate the pace of discovery with the power of Linked-Reads

In a world of incremental improvements, true breakthroughs are born from massive leaps forward. The genomics community is not about shifting paradigms but shattering them. With Linked-Read sequencing data, we can achieve a comprehensive understanding of genomic variation. Power your next discovery with Chromium™ Solutions that uncover the genome and exome data you've been missing. Now, you can resolve ambiguous single nucleotide variants, obtain phasing and haplotype information, identify structural variants, and assemble genomes without breaking a sweat.

Biology is challenging. Research is a race. Get there faster.


Learn more at go.10xgenomics.com/linked-reads

10X GENOMICS®

arbor
biosciences

Paint the Genome with myTags® FISH Probes

Custom-Designed FISH Probes

Increase Specificity and
Reduce Background Signal

LABELED PROBES

- Ready-to-Use FISH Probes
- Ideal for Chromosome Painting & Genetic Mapping
- Variety of Fluorophore and Hapten Labels
- Boost Detection with Triple-Labeled Probes

IMMORTAL LIBRARY

- Amplifiable for In-House Labeling
- Easily Change Probe Labels
- Generate Probes as Needed, When Needed
- Experienced, Friendly Technical Support