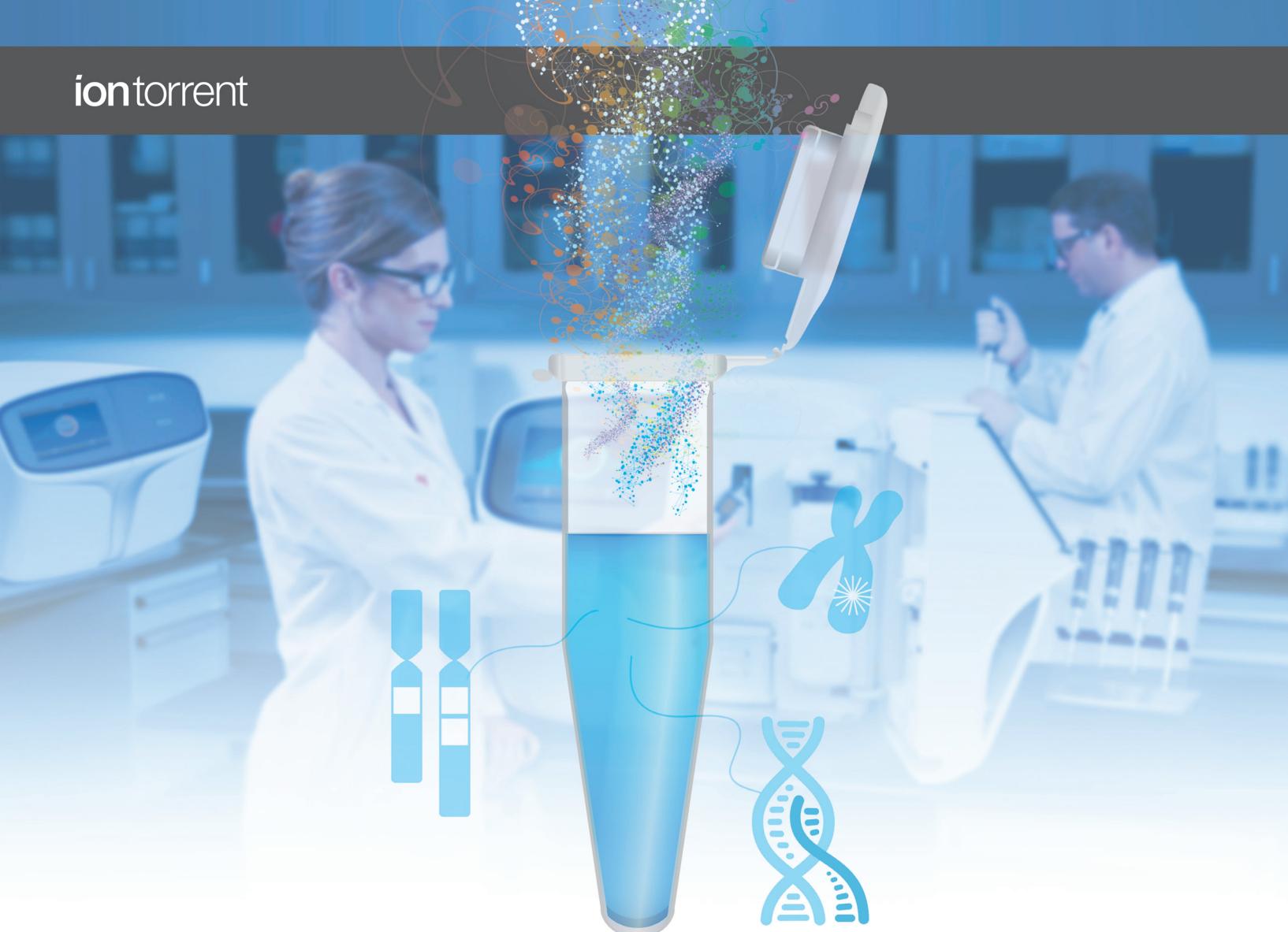


Generate better genome assemblies. Faster.

Accel-NGS® XL Library Kit
for PacBio® Platforms


Revolutionize your whole genome sequencing with the longest NGS reads

- Generates average read length up to 20 kb
- Ready-to-sequence libraries in < 5 hours
- Easy, single-tube assay format
- Inputs as low as 2 µg

GET STARTED NOW: swiftbiosci.com/AccelXL

Swift
BIOSCIENCES™

Transforming NGS Applications

One tube. Many answers.

Ion AmpliSeq technology helps you get the most from your precious samples in a single NGS run

From inherited disease and cancer research to animal health studies, Ion AmpliSeq™ targeted next-generation sequencing (NGS) panels, combined with Ion Torrent™ systems, enable reliable, scalable analysis of many genes and important biomarkers, including SNPs, indels, and fusions—all with one panel, in just one NGS run.

See how Ion AmpliSeq technology can work for you
[at **thermofisher.com/ampliseq**](http://thermofisher.com/ampliseq)

ThermoFisher
SCIENTIFIC

Echo® Acoustic LIQUID HANDLING
for SEQUENCING

Miniaturize Nextera Library Prep Reactions

with Echo® Acoustic Liquid Handling

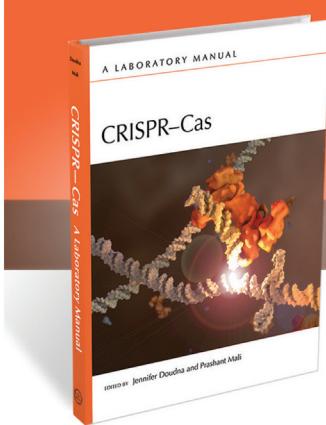
DOWNLOAD
APPLICATION NOTE

Reduce Sequencing Costs

Echo® Liquid Handlers use acoustic energy to transfer nanoliter volumes of reagents, allowing the reduction of NGS library preparation reaction volumes. Dramatically reduce reagent costs, save samples, and eliminate steps – all while improving quality and throughput.

- ▶ **Miniaturize reactions at least 20-fold and significantly reduce cost per sample without sacrificing data quality**
- ▶ **Streamline assay cleanup and sequence more samples in less time for higher throughput and productivity**

For more information, visit www.labcyte.com/sequencing.


© 2017 LABCYTE INC. All rights reserved. Labcyte®, Echo®, and the Labcyte logo are registered trademarks or trademarks of Labcyte Inc., in the U.S. and/or other countries.

FOR RESEARCH USE ONLY. Not for use in diagnostic procedures.

LABCYTE
The Future of Science is Sound

 [@LabcyteInc](https://twitter.com/LabcyteInc)
info-us@labcyte.com

CRISPR-Cas

A Laboratory Manual

The essential guide to CRISPR-Cas

Edited by Jennifer Doudna, *University of California, Berkeley*;
Prashant Mali, *University of California, San Diego*

The development of CRISPR-Cas technology is revolutionizing biology. Based on machinery bacteria use to target foreign nucleic acids, these powerful techniques allow investigators to edit nucleic acids and modulate gene expression more rapidly and accurately than ever before.

Featuring contributions from leading figures in the CRISPR-Cas field, this laboratory manual presents a state-of-the-art guide to the technology. It includes step-by-step protocols for applying CRISPR-Cas-based techniques in various systems, including yeast, zebrafish, *Drosophila*, mice, and cultured cells (e.g., human pluripotent stem cells). The contributors cover web-based tools and approaches for designing guide RNAs that precisely target genes of interest, methods for preparing and delivering CRISPR-Cas reagents into cells, and ways to screen for cells that harbor the desired genetic changes. Strategies for optimizing CRISPR-Cas in each system—especially for minimizing off-target effects—are also provided.

Authors also describe other applications of the CRISPR-Cas system, including its use for regulating genome activation and repression, and discuss the development of next-generation CRISPR-Cas tools. The book is thus an essential laboratory resource for all cell, molecular, and developmental biologists, as well as biochemists, geneticists, and all who seek to expand their biotechnology toolkits.

2016, 192 pages, illustrated (20 color, 4 B&W), index

Paperback: Print Book + eBook \$210

Print Book \$110

eBook \$100

ISBN 978-1-621821-31-1

Hardcover: Print Book + eBook \$250

Print Book \$150

eBook \$100

ISBN 978-1-621821-30-4

Visit our website for special sale pricing!

eBook available exclusively at www.cshlpress.org

Contents

Preface

CHAPTER 1 Overview of CRISPR-Cas9 Biology

INTRODUCTION
Overview of CRISPR-Cas9 Biology
Hannah K. Ratner, Timothy R. Sampson, and David S. Weiss

CHAPTER 2 Guide RNAs: A Glimpse at the Sequences that Drive CRISPR-Cas Systems

INTRODUCTION
Guide RNAs: A Glimpse at the Sequences that Drive CRISPR-Cas Systems

Alexandra E. Briner and Rudolphe Barrangou

PROTOCOL

Prediction and Validation of Native and Engineered Cas9 Guide Sequences
Alexandra E. Briner, Emily D. Henriksen, and Rudolphe Barrangou

CHAPTER 3 Characterization of Cas9-Guide RNA Orthologs

INTRODUCTION

Characterization of Cas9-Guide RNA Orthologs
Jonathan L. Braff, Stephanie J. Yaung, Kevin M. Esvelt, and George M. Church

PROTOCOL

Characterizing Cas9 Protospacer-Adjacent Motifs with High-Throughput Sequencing of Library Depletion Experiments
Jonathan L. Braff, Stephanie J. Yaung, Kevin M. Esvelt, and George M. Church

CHAPTER 4 Large-Scale Single Guide RNA Library Construction and Use for CRISPR-Cas-Based Genetic Screens

INTRODUCTION

Large-Scale Single Guide RNA Library Construction and Use for CRISPR-Cas9-Based Genetic Screens
Tim Wang, Eric S. Lander, and David M. Sabatini

PROTOCOLS

Single Guide RNA Library Design and Construction
Tim Wang, Eric S. Lander, and David M. Sabatini

Viral Packaging and Cell Culture for CRISPR-Based Screens
Tim Wang, Eric S. Lander, and David M. Sabatini

CHAPTER 5 Adeno-Associated Virus-Mediated Delivery of CRISPR-Cas Systems for Genome Engineering in Mammalian Cells

PROTOCOL

Adeno-Associated Virus-Mediated Delivery of CRISPR-Cas Systems for Genome Engineering in Mammalian Cells
Thomas Gaj and David V. Schaffer

CHAPTER 6 Detecting Single-Nucleotide Substitutions Induced by Genome Editing

INTRODUCTION

Detecting Single-Nucleotide Substitutions Induced by Genome Editing
Yuichiro Miyaoka, Amanda H. Chan, and Bruce R. Conklin

PROTOCOL

Using Digital Polymerase Chain Reaction to Detect Single-Nucleotide Substitutions Induced by Genome Editing
Yuichiro Miyaoka, Amanda H. Chan, and Bruce R. Conklin

CHAPTER 7 CRISPR-Cas9 Genome Engineering in *Saccharomyces cerevisiae* Cells

PROTOCOL

CRISPR-Cas9 Genome Engineering in *Saccharomyces cerevisiae* Cells
Owen W. Ryan, Snigdha Poddar, and Jamie H.D. Cate

CHAPTER 8 Cas9-Mediated Genome Engineering in *Drosophila melanogaster*

INTRODUCTION

Cas9-Mediated Genome Engineering in *Drosophila melanogaster*
Benjamin E. Housden and Norbert Perrimon

PROTOCOLS

Design and Generation of Donor Constructs for Genome Engineering in *Drosophila*
Benjamin E. Housden and Norbert Perrimon

Detection of Indel Mutations in *Drosophila* by High-Resolution Melt Analysis (HRMA)
Benjamin E. Housden and Norbert Perrimon

Design and Generation of *Drosophila* Single

Guide RNA Expression Constructs
Benjamin E. Housden, Yanhui Hu, and Norbert Perrimon

CHAPTER 9 Optimization Strategies for the CRISPR-Cas9 Genome-Editing System

INTRODUCTION

Optimization Strategies for the CRISPR-Cas9 Genome-Editing System
Charles E. Vejnar, Miguel Moreno-Mateos, Daniel Cifuentes, Ariel A. Bazzini, and Antonio J. Giraldez

PROTOCOL

Optimized CRISPR-Cas9 System for Genome Editing in Zebrafish
Charles E. Vejnar, Miguel Moreno-Mateos, Daniel Cifuentes, Ariel A. Bazzini, and Antonio J. Giraldez

CHAPTER 10 Editing the Mouse Genome Using the CRISPR-Cas9 System

INTRODUCTION

Editing the Mouse Genome Using the CRISPR-Cas9 System

Adam Williams, Jorge Henao-Mejia, and Richard A. Flavell

PROTOCOL

Generation of Genetically Modified Mice Using the CRISPR-Cas9 Genome-Editing System
Jorge Henao-Mejia, Adam Williams, Anthony Rongvaux, Judith Stein, Cynthia Hughes, and Richard A. Flavell

CHAPTER 11 Genome Editing in Human Pluripotent Stem Cells

INTRODUCTION

Genome Editing in Human Pluripotent Stem Cells
Cory Smith, Zhaohui Ye, and Linzhao Cheng

PROTOCOL

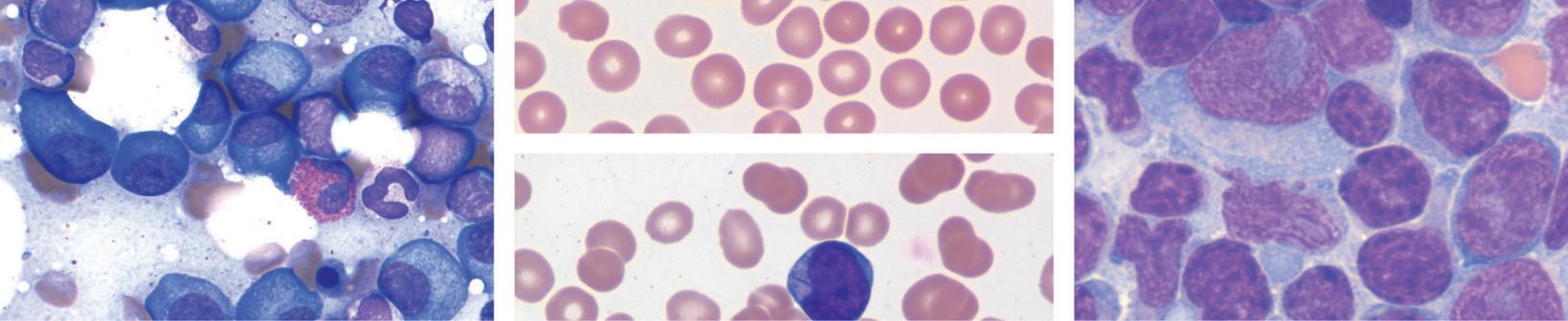
A Method for Genome Editing in Human Pluripotent Stem Cells
Cory Smith, Zhaohui Ye, and Linzhao Cheng

CHAPTER 12 An Introduction to CRISPR Technology for Genome Activation and Repression in Mammalian Cells

INTRODUCTION

An Introduction to CRISPR Technology for Genome Activation and Repression in Mammalian Cells
Dan Du and Lei S. Qi

PROTOCOL


CRISPR Technology for Genome Activation and Repression in Mammalian Cells
Dan Du and Lei S. Qi

APPENDIX General Safety and Hazardous Material Information

INDEX

www.cshlpress.org

Second AACR Conference on

HEMATOLOGIC MALIGNANCIES: TRANSLATING DISCOVERIES TO NOVEL THERAPIES

May 6 - May 9, 2017 • Westin Boston Waterfront • Boston, MA

Register Online or Onsite!

CONFERENCE CHAIRPERSON

Jonathan D. Licht

University of Florida Health Cancer Center, Gainesville, FL

CONFERENCE COCHAIRPERSONS

Lucy A. Godley

University of Chicago,
Chicago, IL

Louis M. Staudt

National Cancer Institute,
Bethesda, MD

Catherine J. Wu

Dana-Farber Cancer Institute,
Boston, MA

ABOUT THIS CONFERENCE

The Second AACR Conference on Hematologic Malignancies: Translating Discoveries to Novel Therapies will include presentations pertaining to leukemia, lymphoma, myeloma, myelodysplastic syndrome, and myeloproliferative neoplasms, spanning the spectrum of cancer science and medicine, from basic science discoveries to their translation in the clinic.

Plenary sessions will be centered on scientific topics relevant to all blood cancers and there will be plenty of networking opportunities with your colleagues and the stellar roster of invited speakers.

Continuing Medical Education (CME) Activity-*AMA PRA Category 1 Credits™* available

Learn more and register at
www.AACR.org/hm17

#AACRheme17

AACR

American Association
for Cancer Research

FINDING CURES TOGETHER™

Decoding the Language of Genetics

By David Botstein, Lewis-Sigler Institute for Integrative Genomics

In this book, the distinguished geneticist David Botstein offers help and advice to scientists and physicians daunted by the arcane technical terms that flourish in his discipline. The science of gene function has a vocabulary of specialized, sometimes confusing terms to explain how traits and diseases are inherited, how genes are organized and regulated in the genome, and how the genetic code is read and translated by cells. These terms are often a barrier to full understanding of the underlying concepts. Yet, as more and more individuals learn about their genomes, the information these sequences contain cannot be understood or explained without reference to the basic ideas of genetics. Botstein draws on his long experience as a teacher and pioneering scientist to explain and illuminate what many genetic terms mean and how they entered common usage.

2015, 240 pages, illustrated (30 4C, 10 B&W), index

Hardcover \$79

P	INTRON	D	DEOXYRIBONUCLEIC ACID
R	P	F	FRAGILE SITE
L	L	C	CHROMOSOME
T	T	P	PHENOTYPE
A	MORPH	D	DEFORMITY
T	D	D	DIPLOID
R	O	N	NON-MUTANT
O	H	N	HEMIZYGOTIC
P	P	H	HOMOLOGOUS
H	L	H	HOMOLOGUE
C	I	I	INTRANUCLEAR
ON	H	N	NUCLEOLUS
T	A	E	EXON
T	P	A	PROTEIN
I	L	T	TRANSLATION
G	G	F	FRAMESHIFT
E	E	R	REVERSAL
N	P	S	STRUCTURE
B	BOTSTEIN	G	GENOTYPE
A	R	O	ORF
S	T	N	NUCLEOTIDE
S	S	I	INTERACTION
I	I	I	INTRANUCLEAR
			ALLOSTERIC

Contents

- Preface
- Acknowledgments
- 1 The Basics
- 2 Implicit Experiments and the Functional Gene
- 3 Recombination and Linkage Mapping
- 4 Pathway Analysis
- 5 Regulation of Metabolic Pathways
- 6 Phage and the Beginning of Molecular Genetics
- 7 Transcription, Translation, and the Genetic Code
- 8 Suppression Genetics
- 9 Functional Suppression
- 10 The Genetics of Complex Phenotypes
- 11 Transcriptional Regulation of Gene Expression
- 12 The Modular Architecture of Genes and Genomes
- 13 Evolution Conserves Functional Sequences
- 14 Human Population Genetics
- 15 Inferring Human Gene Function from Disease Alleles
- 16 What Is Next in Genetics and Genomics?
- Index

www.cshlpress.org

Ultra-pure dNTPs at unbeatable prices

Description

dNTPs contain dATP, dCTP, dGTP and dTTP (monosodium salts) at a concentration of 10mM or 100mM each in sterile deionized water at pH7.5, whose purity is up to 99.5% (HPLC). It is free of RNase and DNase, and suitable for any molecular biology application that requires pure deoxynucleotides, such as PCR, DNA sequencing, cDNA synthesis and nick translation.

Stability

All of our dNTPs are very stable – we guarantee 100% stability for 2 years from the date of purchase.

Features

- Ultra-pure: >99% by HPLC
- Reliable, consistent results
- Available both as ready-to-use mix and a set

Applications

- PCR and qPCR
- cDNA synthesis
- Primer extension
- DNA sequencing
- DNA labeling
- Mutagenesis

Quality control

- Purity assay (HPLC) >99%
- Free of pyrophosphate, DNA and RNA
- DNase, RNase and nickase free
- Tested for PCR, qPCR and RT-PCR

Beijing SBS Genetech Co. Ltd.

Fax: +86-10-82784290

Email: order@sbsbio.com Website: www.sbsbio.com

Superb sensitivity. No thermocycler.

Researchers from the Natural Resources Institute, UK, developed an RPA-based assay that can detect **as little as 14pg/µl** of purified RNA from a plant infected with *Yam mosaic virus*; comparable to the gold standard RT-PCR method, but without the need of a thermocycler.

Discover how this assay could help African farmers:
twistdx.co.uk/yam

RPA. It really works.
twistdx.co.uk | +44 (0)1223 496700