

JUST RIGHT FOR...

AUTOMATION FOR THE COMPLETE LINEUP OF GENOMIC APPLICATIONS.

For any throughput—and any application—the Fragment Analyzer™ is the premier instrument for simultaneously automating the qualification and quantification of nucleic acid fragments and smears.

Transforming NGS
Library Prep Applications

Discover More from Your Liquid Biopsy Samples

Accel-Amplicon™ Panels

A Proven All-in-One Amplicon Solution

- Delivering 1% somatic mutation detection from 10 ng of DNA
- Simple single-tube, 2-hour workflow

Accel-NGS® 2S Hyb DNA Library Kit

Highest Library Diversity, Lowest Inputs

- Enabling whole exome sequencing from 25 ng of DNA
- Compatible with all hybridization enrichment panels

Swift
BIOSCIENCES™
www.swiftbiosci.com

The S is for Simplicity

The new Ion S5™ System.
Targeted sequencing has
never been simpler.

Simple library prep tools, cartridge-based reagents and automated data analysis have reduced DNA-to-data hands-on time to less than 45 minutes. So you'll spend less time doing routine molecular biology, and more time informing time-sensitive decisions.

Ion AmpliSeq™ technology

As little as 1 ng low-quality DNA sample input for library prep

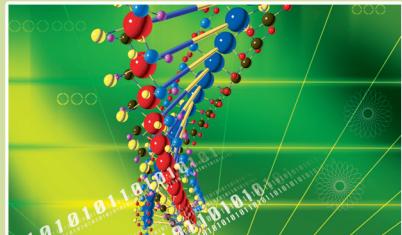
Cartridge-based reagents

Less than 15 minutes of sequencing setup time

2.5 to 4 hours of run time

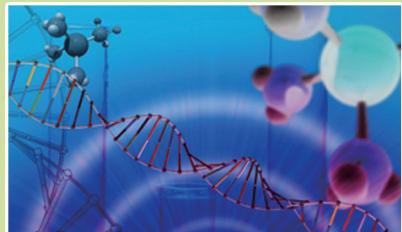
Fastest run time of any benchtop sequencer

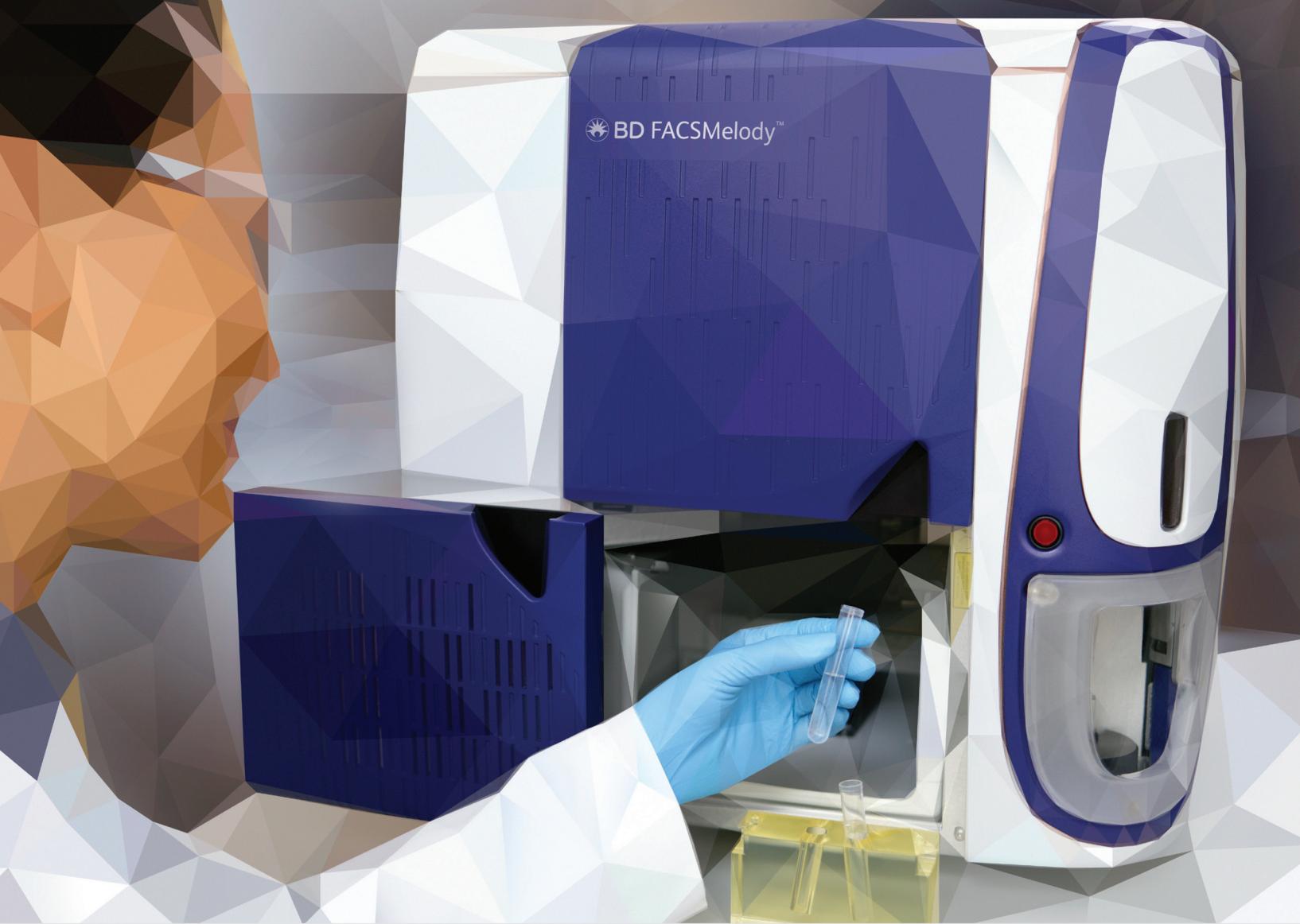
Watch the Ion S5 System in action at
thermofisher.com/ionS5


ThermoFisher
SCIENTIFIC

Gene Synthesis Services

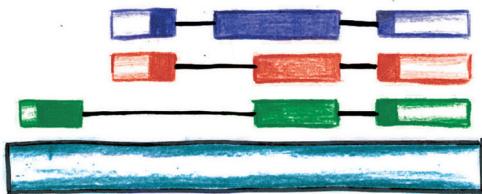
As low as... US\$0.27 per bp


Give me sequences, and return you genes:


Up to 300 bp	\$80 per gene	1-2 weeks
300 bp to 1,000 bp	\$0.27 per bp	1-2 weeks
1,001 bp to 2,000 bp	\$0.30 per bp	~ 2 weeks
2,001 bp to 3,000 bp	\$0.35 per bp	2-3 weeks
Larger than 3,000 bp	inquiry	inquiry

- Fully cloned and 100% sequence verified.
- Free codon optimization

Genes with challenging features such as complex secondary structure, repetitive sequences (direct or indirect), high(>80%) or low (<20%) GC content, or long polypurine/polypyrimidine runs can be synthesized with our unique proprietary technology. Please contact us for a quote.


THE DIFFERENCE OF **ONE SIMPLE SORT**

ONE RESEARCHER, ONE SORTER, ONE CELL, MANY DISCOVERIES. BD is dedicated to developing easy-to-use cell sorting technologies that simplify accurate and reliable flow cytometry. The BD FACSMelody™ cell sorter introduces a powerful combination of high performance, reproducible results and automated ease of use from a brand whose integrated flow cytometry portfolio and rigorous standards you can trust. BD FACSMelody is an affordable cell sorter that requires minimal training making it an ideal solution to advance your research. Its software guides the operator through every step, with a system sort readiness of less than 17 minutes for optimal timeliness. Designed to improve efficiency and throughput, it comes with the full suite of BD service and support to help you maximize your investment. Learn more about the one cell sorter that is easy to learn, to use and to maintain. Discover the difference one company can make. **Discover the new BD.**

Learn more about the Difference of One at bd.com/GR-SimpleSort

Class 1 Laser Product.
For Research Use Only. Not for use in diagnostic or therapeutic procedures.
© 2016 BD. BD, the BD Logo and BD FACSMelody are trademarks of Becton, Dickinson and Company.
23-18464-01 MC6344

What if my RNA-Seq is wrong?

Only with SIRVs can you be confident.

Spike-in controls are essential in RNA-Seq experiments to assess workflow and platform properties. However, external RNA controls existing to date are generally mono-exonic and non-variant, significantly limiting their ability to reflect the true nature of eukaryotic transcriptomes. These are characterized by extensive splicing, alternative and antisense transcription, overlapping genes, and rare events like the formation of fusion genes. The performance of RNA preparation, library generation, sequencing, and bioinformatics algorithms can furthermore not be assessed adequately without known transcript spike-in controls of representative complexity.

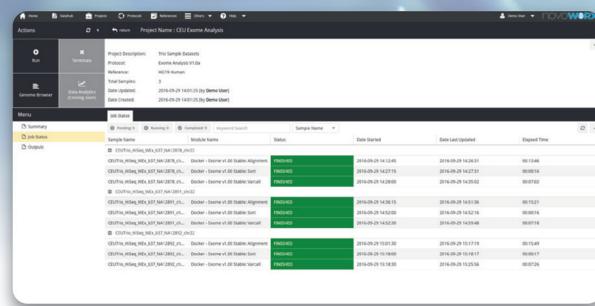
To address this gap, Lexogen has conceived Spike-In RNA Variants (SIRVs) for the quantification of mRNA isoforms in Next Generation Sequencing. The accuracy of mapping, isoform assembly and quantification can be assessed, making isoform-quantification based experiments comparable.

SIRVs (Spike-in RNA Variant Control Mixes)

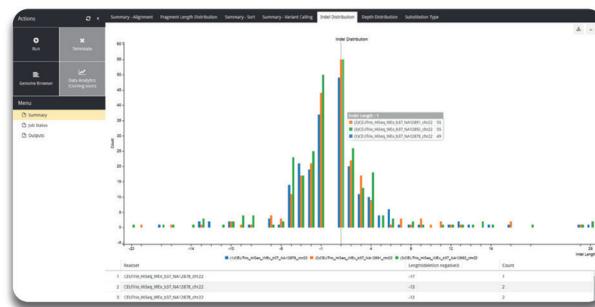
- ✓ 69 artificial transcript variants representing alternative splicing, promoter and poly(A) site usage, overlapping genes, and antisense transcription.
- ✓ Validation of the RNA-Seq pipeline.
- ✓ Quantification of differential expression on the transcript level.

Introducing novoWorx™, a Genome Data Management and Analytics platform

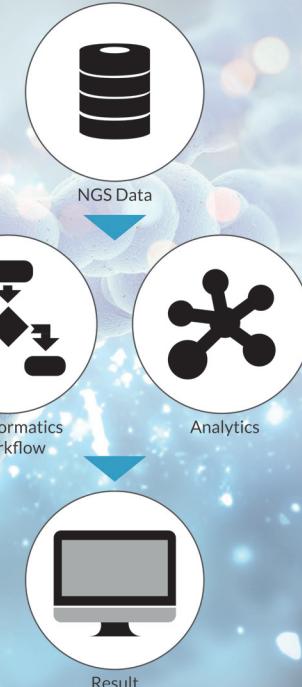
A comprehensive multi proprietary platform to accelerate your research by using sophisticated, fully automated solutions powered by the latest technologies.


Why novoWorx™?

- The only commercially available tool to offer embedded novoAlign™ and novoSort™ programs for high-throughput bioinformatics analysis.
- A modular system for delivering canned genomics pipelines.
- Process large datasets consisting of multiple samples without programming knowledge.
- Generates all the outputs in standard formats required for downstream/tertiary analysis by other systems.


Features

- Web-enabled and secure interface with access control.
- Drag and drop files into the interface.
- Supports multiple samples run from a single click, no coding required to loop through large sample collection sets.
- Integrated genome browser.
- Cluster-aware (SGE support) and monitor all running, pending and completed jobs.
- Result file downloads.
- Browse all files as reactive tables and figures.


CONTACT US FOR A DEMO TODAY!

Streamlined, user-friendly interface for easy navigation

Ready to use downloadable results

Information on pipelines and analytics tools are available on the website.

Requirement	Minimum	Recommended
CPU	Dual Core 1.8 GHZ	Octa Core 3.2 GHZ
Memory	4 GB DDR2	16 GB DDR3
Storage space	5 GB for installation media 15 GB post installation* 100 GB free space**	5 GB for installation media 15 GB post installation* 100 GB free space**
Network	500Kb/s download speed	1 Mb/s download speed
Virtual Machine Environment	Any Virtual Machine Environment capable of importing OVA files	Oracle VirtualBox (recommended) or VMware

*only takes into account the OVA installation media.

**post installation file size.

Files	Size
novoWorx™ (Required)	2 GB
HG19 Reference files	18 GB

**Echo® Acoustic LIQUID HANDLING
for SYNTHETIC BIOLOGY**

Reduce DNA Assembly and QC Costs **100-Fold**

Echo® Liquid Handlers use acoustic energy to transfer DNA oligos and reagents, allowing the reduction of DNA assembly and NGS library preparation reaction volumes. Dramatically reduce reagent costs, save samples, and eliminate steps – all while improving the quality and throughput of synthetic genes.

100-fold reduction of Gibson or Golden Gate assembly reaction volumes


100-fold reduction of NGS library preparation volumes

Increased assembly and QC throughput

Automation to easily process thousands of assemblies

COMPARISON OF LIQUID HANDLING METHODS

	Manual Pipetting	Echo® Liquid Handler
Amount of DNA	50 ng	0.06 – 2.0 ng
DNA volume (Rxn)	25 µL	200 nL
Library prep volume (Rxn)	25 µL	300 nL
Total volume	50 µL	0.5 µL
Reactions per kit	96	9600
Cost per reaction	\$72.91	\$0.73

For more information, visit www.labcyte.com/synbio.

LABCYTE
The Future of Science is Sound

© 2016 LABCYTE INC. All rights reserved. Labcyte®, Echo®, and the Labcyte logo are registered trademarks or trademarks of Labcyte Inc., in the U.S. and/or other countries.

FOR RESEARCH USE ONLY. Not for use in diagnostic procedures.

 [@Labcytelnc](https://twitter.com/Labcytelnc)
info-us@labcyte.com

AACR

American Association
for Cancer Research

ANNUAL MEETING

2017

WASHINGTON, DC

RESEARCH

PROPELLING
CANCER
PREVENTION
AND CURES

April 1-5, 2017 • Walter E. Washington Convention Center • Washington, DC

AACR.org • #AACR17

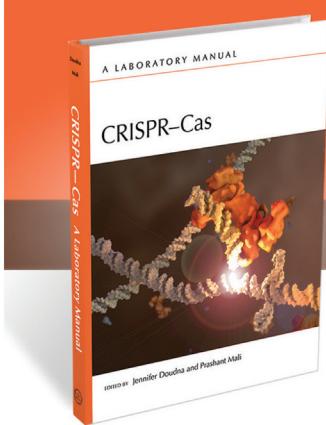
**Join us in Washington, DC
for the latest innovative and inspiring cancer research from around the world...
the AACR Annual Meeting 2017!**

You won't want to miss this five-day, comprehensive program offering world-class opportunities to learn, collaborate, and share not only the progress made in cancer research, but also the promise of what is to come. This new era of cancer discovery is unprecedented with respect to rapidly emerging cancer science and new and effective molecularly targeted therapies.

The best and brightest researchers in the world will attend this meeting that covers every aspect of cancer – from molecular biology, clinical studies, epidemiology, and prevention to survivorship. And you'll want to be among them.

**Submit your abstract by
THURSDAY, NOVEMBER 17.**

**Register and save by
JANUARY 29.**


Become a Member!
Join the AACR and receive a discount on registration.

We look forward to seeing you in Washington, DC!

110
1907 • YEARS • 2017

AACR

American Association
for Cancer Research

CRISPR-Cas

A Laboratory Manual

The essential guide to CRISPR-Cas

Edited by Jennifer Doudna, *University of California, Berkeley*;
Prashant Mali, *University of California, San Diego*

The development of CRISPR-Cas technology is revolutionizing biology. Based on machinery bacteria use to target foreign nucleic acids, these powerful techniques allow investigators to edit nucleic acids and modulate gene expression more rapidly and accurately than ever before.

Featuring contributions from leading figures in the CRISPR-Cas field, this laboratory manual presents a state-of-the-art guide to the technology. It includes step-by-step protocols for applying CRISPR-Cas-based techniques in various systems, including yeast, zebrafish, *Drosophila*, mice, and cultured cells (e.g., human pluripotent stem cells). The contributors cover web-based tools and approaches for designing guide RNAs that precisely target genes of interest, methods for preparing and delivering CRISPR-Cas reagents into cells, and ways to screen for cells that harbor the desired genetic changes. Strategies for optimizing CRISPR-Cas in each system—especially for minimizing off-target effects—are also provided.

Authors also describe other applications of the CRISPR-Cas system, including its use for regulating genome activation and repression, and discuss the development of next-generation CRISPR-Cas tools. The book is thus an essential laboratory resource for all cell, molecular, and developmental biologists, as well as biochemists, geneticists, and all who seek to expand their biotechnology toolkits.

2016, 192 pages, illustrated (20 color, 4 B&W), index

Paperback: Print Book + eBook \$210

Print Book \$110

eBook \$100

ISBN 978-1-621821-31-1

Hardcover: Print Book + eBook \$250

Print Book \$150

eBook \$100

ISBN 978-1-621821-30-4

Visit our website for special sale pricing!

eBook available exclusively at www.cshlpress.org

Contents

Preface

CHAPTER 1 Overview of CRISPR-Cas9 Biology

INTRODUCTION
Overview of CRISPR-Cas9 Biology
Hannah K. Ratner, Timothy R. Sampson, and David S. Weiss

CHAPTER 2 Guide RNAs: A Glimpse at the Sequences that Drive CRISPR-Cas Systems

INTRODUCTION
Guide RNAs: A Glimpse at the Sequences that Drive CRISPR-Cas Systems

Alexandra E. Briner and Rudolphe Barrangou

PROTOCOL

Prediction and Validation of Native and Engineered Cas9 Guide Sequences
Alexandra E. Briner, Emily D. Henriksen, and Rudolphe Barrangou

CHAPTER 3 Characterization of Cas9-Guide RNA Orthologs

INTRODUCTION

Characterization of Cas9-Guide RNA Orthologs
Jonathan L. Braff, Stephanie J. Yaung, Kevin M. Esvelt, and George M. Church

PROTOCOL

Characterizing Cas9 Protospacer-Adjacent Motifs with High-Throughput Sequencing of Library Depletion Experiments
Jonathan L. Braff, Stephanie J. Yaung, Kevin M. Esvelt, and George M. Church

CHAPTER 4 Large-Scale Single Guide RNA Library Construction and Use for CRISPR-Cas-Based Genetic Screens

INTRODUCTION

Large-Scale Single Guide RNA Library Construction and Use for CRISPR-Cas9-Based Genetic Screens
Tim Wang, Eric S. Lander, and David M. Sabatini

PROTOCOLS

Single Guide RNA Library Design and Construction
Tim Wang, Eric S. Lander, and David M. Sabatini

Viral Packaging and Cell Culture for CRISPR-Based Screens
Tim Wang, Eric S. Lander, and David M. Sabatini

CHAPTER 5 Adeno-Associated Virus-Mediated Delivery of CRISPR-Cas Systems for Genome Engineering in Mammalian Cells

PROTOCOL

Adeno-Associated Virus-Mediated Delivery of CRISPR-Cas Systems for Genome Engineering in Mammalian Cells
Thomas Gaj and David V. Schaffer

CHAPTER 6 Detecting Single-Nucleotide Substitutions Induced by Genome Editing

INTRODUCTION

Detecting Single-Nucleotide Substitutions Induced by Genome Editing
Yuichiro Miyaoka, Amanda H. Chan, and Bruce R. Conklin

PROTOCOL

Using Digital Polymerase Chain Reaction to Detect Single-Nucleotide Substitutions Induced by Genome Editing
Yuichiro Miyaoka, Amanda H. Chan, and Bruce R. Conklin

CHAPTER 7 CRISPR-Cas9 Genome Engineering in *Saccharomyces cerevisiae* Cells

PROTOCOL

CRISPR-Cas9 Genome Engineering in *Saccharomyces cerevisiae* Cells
Owen W. Ryan, Snigdha Poddar, and Jamie H.D. Cate

CHAPTER 8 Cas9-Mediated Genome Engineering in *Drosophila melanogaster*

INTRODUCTION

Cas9-Mediated Genome Engineering in *Drosophila melanogaster*
Benjamin E. Housden and Norbert Perrimon

PROTOCOLS

Design and Generation of Donor Constructs for Genome Engineering in *Drosophila*
Benjamin E. Housden and Norbert Perrimon

Detection of Indel Mutations in *Drosophila* by High-Resolution Melt Analysis (HRMA)
Benjamin E. Housden and Norbert Perrimon

Design and Generation of *Drosophila* Single Guide RNA Expression Constructs
Benjamin E. Housden, Yanhui Hu, and Norbert Perrimon

CHAPTER 9 Optimization Strategies for the CRISPR-Cas9 Genome-Editing System

INTRODUCTION

Optimization Strategies for the CRISPR-Cas9 Genome-Editing System
Charles E. Vejnar, Miguel Moreno-Mateos, Daniel Cifuentes, Ariel A. Bazzini, and Antonio J. Giraldez

PROTOCOL

Optimized CRISPR-Cas9 System for Genome Editing in Zebrafish
Charles E. Vejnar, Miguel Moreno-Mateos, Daniel Cifuentes, Ariel A. Bazzini, and Antonio J. Giraldez

CHAPTER 10 Editing the Mouse Genome Using the CRISPR-Cas9 System

INTRODUCTION

Editing the Mouse Genome Using the CRISPR-Cas9 System
Adam Williams, Jorge Henao-Mejia, and Richard A. Flavell

PROTOCOL

Generation of Genetically Modified Mice Using the CRISPR-Cas9 Genome-Editing System
Jorge Henao-Mejia, Adam Williams, Anthony Rongvaux, Judith Stein, Cynthia Hughes, and Richard A. Flavell

CHAPTER 11 Genome Editing in Human Pluripotent Stem Cells

INTRODUCTION

Genome Editing in Human Pluripotent Stem Cells
Cory Smith, Zhaohui Ye, and Linzhao Cheng

PROTOCOL

A Method for Genome Editing in Human Pluripotent Stem Cells
Cory Smith, Zhaohui Ye, and Linzhao Cheng

CHAPTER 12 An Introduction to CRISPR Technology for Genome Activation and Repression in Mammalian Cells

INTRODUCTION

An Introduction to CRISPR Technology for Genome Activation and Repression in Mammalian Cells
Dan Du and Lei S. Qi

PROTOCOL

CRISPR Technology for Genome Activation and Repression in Mammalian Cells
Dan Du and Lei S. Qi

APPENDIX General Safety and Hazardous Material Information
INDEX

www.cshlpress.org

Decoding the Language of Genetics

By David Botstein, Lewis-Sigler Institute for Integrative Genomics

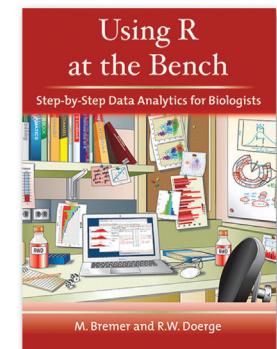
In this book, the distinguished geneticist David Botstein offers help and advice to scientists and physicians daunted by the arcane technical terms that flourish in his discipline. The science of gene function has a vocabulary of specialized, sometimes confusing terms to explain how traits and diseases are inherited, how genes are organized and regulated in the genome, and how the genetic code is read and translated by cells. These terms are often a barrier to full understanding of the underlying concepts. Yet, as more and more individuals learn about their genomes, the information these sequences contain cannot be understood or explained without reference to the basic ideas of genetics. Botstein draws on his long experience as a teacher and pioneering scientist to explain and illuminate what many genetic terms mean and how they entered common usage.

2015, 240 pages, illustrated (30 4C, 10 B&W), index

Hardcover \$79

P	INTRON	D	DEOXYRIBONUCLEIC ACID
R	P	F	FRAGILE SITE
L	L	C	CHROMOSOME
T	T	P	PHENOTYPE
A	MORPH	D	DOMINANT
T	DIPLOID	D	DOMINANT
R	O	N	NEUTRAL
O	HEMIZYGOTES	N	NEUTRAL
P	P	H	HOMOLOGOUS
H	H	H	HOMOLOGOUS
C	I	I	INTRANUCLEAR
ON	H	N	NUCLEOLUS
T	A	K	NUCLEOLUS
T	P	E	NUCLEOLUS
I	A	T	NUCLEOLUS
G	L	F	NUCLEOLUS
E	G	G	NUCLEOLUS
N	E	R	NUCLEOLUS
B	N	Z	NUCLEOLUS
O	P	T	NUCLEOLUS
T	BOTSTEIN	R	NUCLEOLUS
S	G	R	NUCLEOLUS
S	S	O	NUCLEOLUS
I	T	N	NUCLEOLUS
		I	NUCLEOLUS
		O	NUCLEOLUS
		N	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T	NUCLEOLUS
		M	NUCLEOLUS
		U	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		T	NUCLEOLUS
		R	NUCLEOLUS
		E	NUCLEOLUS
		T</td	

Using R at the Bench


Step-by-Step Data Analytics for Biologists

By Martina Bremer, *Department of Mathematics, San Jose State University, California*;
Rebecca W. Doerge, *Departments of Statistics and Agronomy, Purdue University, Indiana*

Using R at the Bench: Step-by-Step Data Analytics for Biologists is a convenient bench-side handbook for biologists, designed as a handy reference guide for elementary and intermediate statistical analyses using the free/public software package known as “R.” The expectations for biologists to have a more complete understanding of statistics are growing rapidly. New technologies and new areas of science, such as microarrays, next-generation sequencing, and proteomics, have dramatically increased the need for quantitative reasoning among biologists when designing experiments and interpreting results. Even the most routine informatics tools rely on statistical assumptions and methods that need to be appreciated if the scientific results are to be correct, understood, and exploited fully.

While the original *Statistics at the Bench* is still available for sale and has all examples in Excel, this new book uses the same text and examples in R. There is a new chapter that introduces the basics of R (where to download, getting people connected to it, and some basic commands and resources). There is also a new chapter that explains how to analyze Next Generation Sequencing data using R (specifically, RNA-seq). R has many functions for these analyses and *Using R at the Bench: Step-by-Step Data Analytics for Biologists* is an excellent resource for those biologists who want to learn R. This book is an essential handbook for working scientists providing a simple refresher for those who have forgotten what they once knew, and an overview for those wishing to use more quantitative reasoning in their research. Statistical methods, as well as guidelines for the interpretation of results, are explained using simple examples. Throughout the book, examples are accompanied by detailed R commands for easy reference.

2015, 200 pages, illustrated (36 2C, 52 B&W), index
Hardcover \$61

ISBN 978-1-621821-12-0

Contents

1 Introduction

2 Common Pitfalls

- 2.1 Examples of Common Mistakes
- 2.2 Defining Your Question
- 2.3 Working with and Talking to a Statistician
- 2.4 Exploratory versus Inferential Statistics
- 2.5 Different Sources of Variation
- 2.6 Model Assumptions are Important
- 2.7 Statistical Software Packages
- 2.8 Installing and Using R and R Commander
 - 2.8.1 Loading Data
 - 2.8.2 Variable types
 - 2.8.3 Handling Graphics
 - 2.8.4 Saving Your Work
 - 2.8.5 Getting Help

3 Descriptive Statistics

- 3.1 Definitions
- 3.2 Numerical Ways to Describe Data
 - 3.2.1 Categorical Data
 - 3.2.2 Quantitative Data
 - 3.2.3 Determining Outliers
 - 3.2.4 How to Choose a Descriptive Measure
- 3.3 Graphical Methods to Display Data
 - 3.3.1 How to Choose the Appropriate Graphical Display for Your Data
- 3.4 Probability Distributions
 - 3.4.1 The Binomial Distribution
 - 3.4.2 The Normal Distribution
 - 3.4.3 Assessing Normality in Your Data

- 3.4.4 Data Transformations
- 3.5 The Central Limit Theorem
 - 3.5.1 The Central Limit Theorem for Sample Proportions
 - 3.5.2 The Central Limit Theorem for Sample Means
- 3.6 Standard Deviation vs. Standard Error
- 3.7 Error Bars
- 3.8 Correlation
 - 3.8.1 Correlation and Causation
- 4 Design of Experiments
- 4.1 Mathematical and Statistical Models
 - 4.1.1 Biological Models
- 4.2 Describing Relationships between Variables
- 4.3 Choosing a Sample
 - 4.3.1 Problems in Sampling: Bias
 - 4.3.2 Problems in Sampling: Accuracy and Precision
- 4.4 Choosing a Model
- 4.5 Sample Size
- 4.6 Resampling and Replication
- 5 Confidence Intervals
- 5.1 Interpretation of Confidence Intervals
 - 5.1.1 Confidence Levels
 - 5.1.2 Precision
- 5.2 Computing Confidence Intervals
 - 5.2.1 Confidence Intervals for Large Sample Mean
 - 5.2.2 Confidence Interval for Small Sample Mean
 - 5.2.3 Confidence Interval for Population Proportion
- 5.3 Sample Size Calculations
- 6 Hypothesis Testing
- 6.1 The Basic Principle
 - 6.1.1 p -values
 - 6.1.2 Errors in Hypothesis Testing
 - 6.1.3 Power of a Test
 - 6.1.4 Interpreting Statistical Significance
- 6.2 Common Hypothesis Tests
 - 6.2.1 t -test
 - 6.2.2 z -test
 - 6.2.3 F -test
 - 6.2.4 Tukey's Test and Scheffé's Test
 - 6.2.5 χ^2 -test: Goodness-of-Fit or Test of Independence
 - 6.2.6 Likelihood Ratio Test
- 6.3 Non-parametric Tests
 - 6.3.1 Wilcoxon-Mann-Whitney Rank Sum Test
 - 6.3.2 Fisher's Exact Test
 - 6.3.3 Permutation Tests
 - 6.4 E -values
- 7 Regression and ANOVA
- 7.1 Regression
 - 7.1.1 Parameter Estimation
 - 7.1.2 Hypothesis Testing
 - 7.1.3 Logistic Regression
 - 7.1.4 Multiple Linear Regression
 - 7.1.5 Model Building in Regression—Which Variables to Use?
 - 7.1.6 Verification of Assumptions
 - 7.1.7 Outliers in Regression
 - 7.1.8 A Case Study

- 7.2 ANOVA
 - 7.2.1 One-Way ANOVA Model
 - 7.2.2 Two-Way ANOVA Model
 - 7.2.3 ANOVA Assumptions
 - 7.2.4 ANOVA Model for Microarray Data
- 7.3 What ANOVA and Regression models have in common
- 8 Special Topics
- 8.1 Classification
- 8.2 Clustering
 - 8.2.1 Hierarchical Clustering
 - 8.2.2 Partitional Clustering
- 8.3 Principle Component Analysis
- 8.4 Microarray Data Analysis
 - 8.4.1 The Data
 - 8.4.2 Normalization
 - 8.4.3 Statistical Analysis
 - 8.4.4 The ANOVA Model
 - 8.4.5 Variance Assumptions
 - 8.4.6 Multiple Testing Issues
- 8.5 The Basics of Next Generation Sequencing Analysis
- 8.6 Maximum Likelihood
- 8.7 Frequentist and Bayesian Statistics

Index

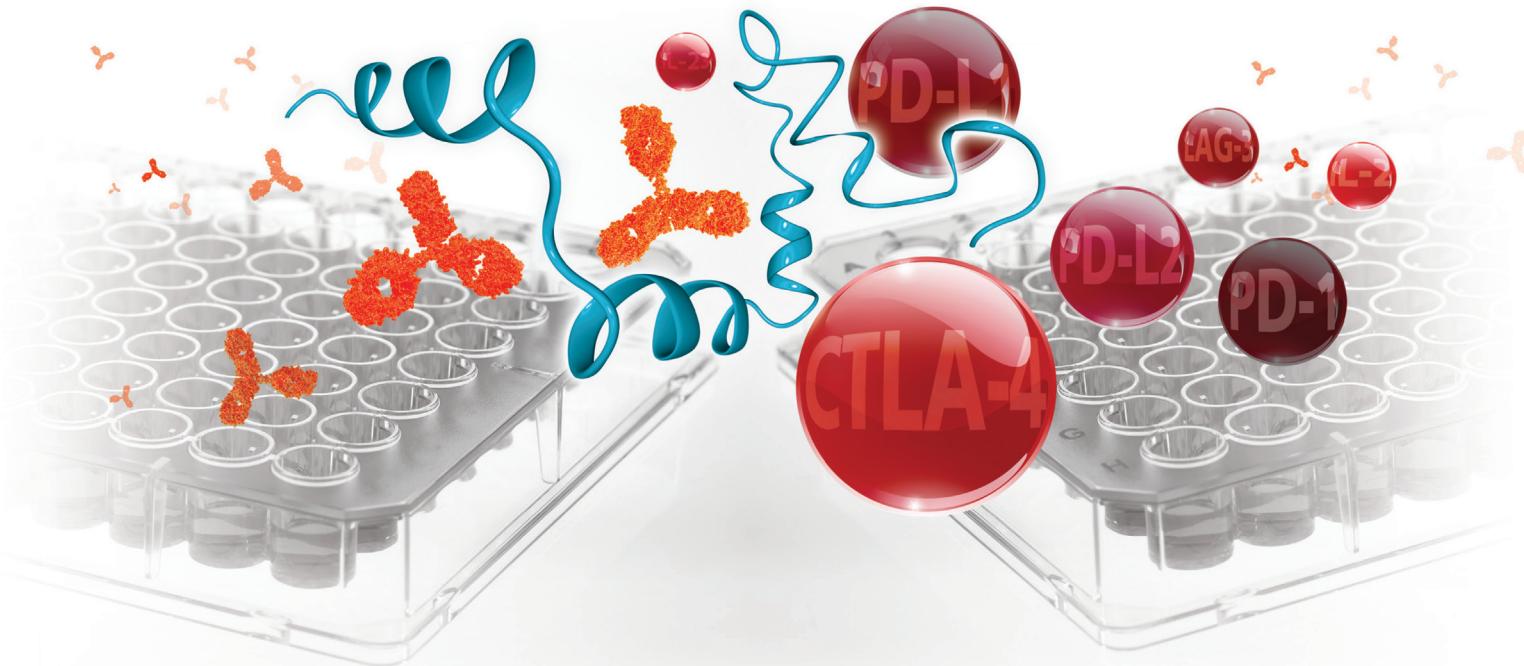
Index of Worked Out Examples

Index of R Commander Commands

www.cshlpress.org

WE MAKE DATA USEFUL. YOU MAKE THE DISCOVERIES.

Our bioinformaticians make The Cancer Genome Atlas (TCGA) data usable. More than a petabyte of multidimensional cancer genomic data from 11,328 patients, 140 metadata fields, and over 200 tools and workflows — all ready for immediate analysis in the cloud.



sevenbridges.com/usefuldata

SevenBridges

Immunoassays for immuno-oncology research

Move confidently across platforms

Immune checkpoints have come to the forefront of cancer therapies as a powerful and promising strategy to stimulate anti-tumor T cell activity. Affymetrix provides a wide range of products for immune-oncology research for the quantification of these important checkpoint proteins. ProcartaPlex® Human Immuno-oncology Checkpoint Panel enables simultaneous quantification of 14 checkpoint modulators. Speed, sensitivity, and specificity make Platinum ELISA the method of choice for biomarker evaluation.

Affymetrix offers multiple immunoassay platforms, providing the freedom to move from a multiplex assay to an ELISA while producing comparable data.

- 98% correlation of antibody pairs across platforms
- Lot-to-lot consistency for reliable reproducibility
- Exceptional scalability between ProcartaPlex® assays and traditional Platinum ELISA

Visit our website to learn more about the ProcartaPlex® Human Immuno-oncology Checkpoint Marker Panel and Platinum ELISA

www.ebioscience.com/immuno-oncology

© 2016 Affymetrix, Inc. All rights reserved. For Research Use Only. Not for use in diagnostic procedures.

eBioscience

GeneChip

USB