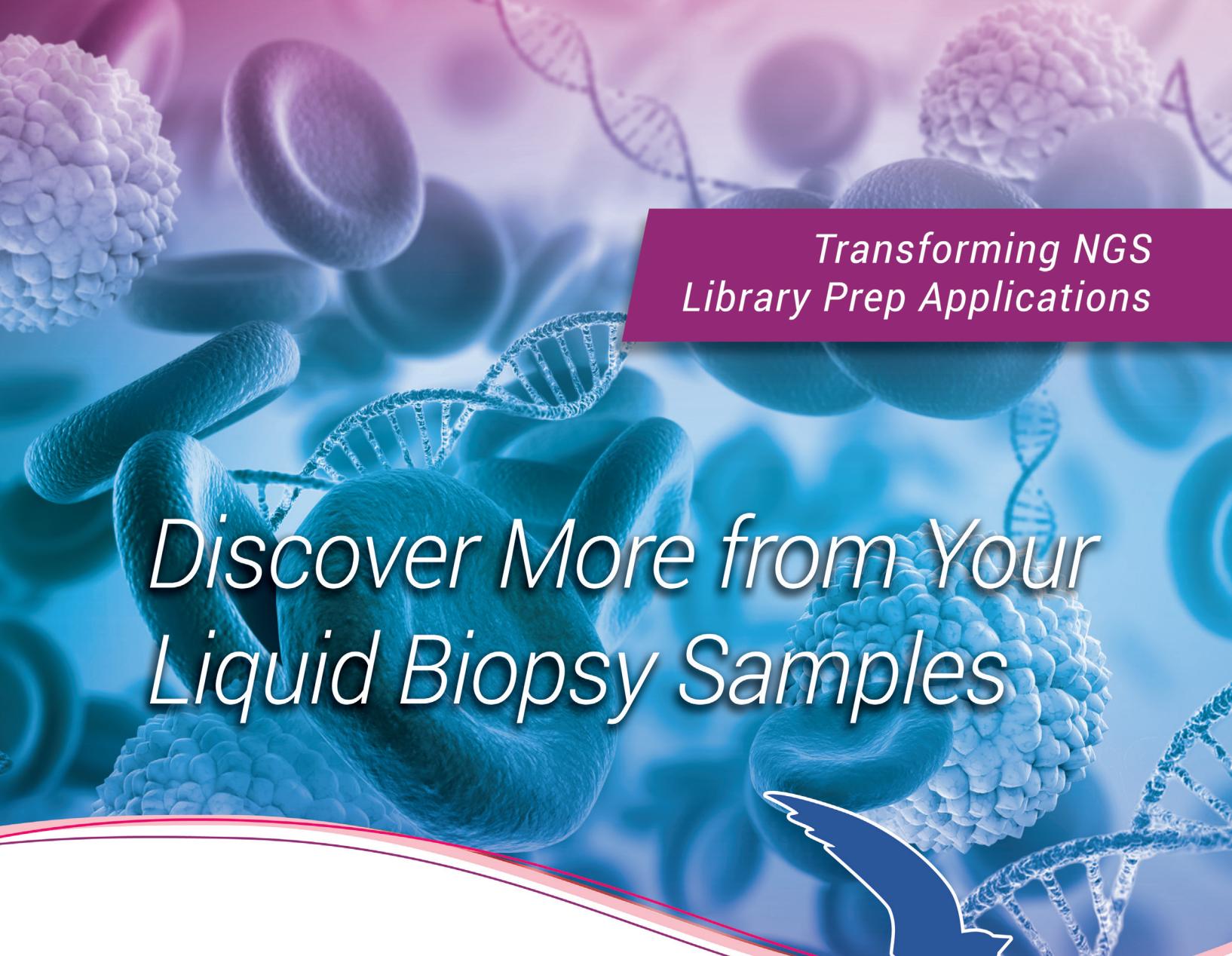


JUST RIGHT

TOOL KIT


WHETHER YOU RUN 24, 240 OR EVEN 2,400 SAMPLES A DAY,
FRAGMENT ANALYZER™ IS JUST RIGHT.

Qualify and quantify nucleic acids for ANY throughput.

Streamline sample analysis for ANY application.

NGS QC - RNA QC - gDNA - SSRs

Transforming NGS
Library Prep Applications

Discover More from Your Liquid Biopsy Samples

Accel-Amplicon™ Panels

A Proven All-in-One Amplicon Solution

- Delivering 1% somatic mutation detection from 10 ng of DNA
- Simple single-tube, 2-hour workflow

Accel-NGS® 2S Hyb DNA Library Kit

Highest Library Diversity, Lowest Inputs

- Enabling whole exome sequencing from 25 ng of DNA
- Compatible with all hybridization enrichment panels

Swift
BIOSCIENCES™
www.swiftbiosci.com

The S is for Simplicity

The new Ion S5™ System.
Targeted sequencing has
never been simpler.

Simple library prep tools, cartridge-based reagents and automated data analysis have reduced DNA-to-data hands-on time to less than 45 minutes. So you'll spend less time doing routine molecular biology, and more time informing time-sensitive decisions.

Ion AmpliSeq™ technology

As little as 1 ng low-quality DNA sample input for library prep

Cartridge-based reagents

Less than 15 minutes of sequencing setup time

2.5 to 4 hours of run time

Fastest run time of any benchtop sequencer

Watch the Ion S5 System in action at
thermofisher.com/ionS5

ThermoFisher
SCIENTIFIC

SBS Genetech Co.,Ltd.

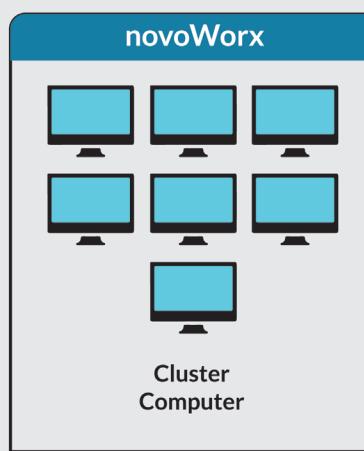
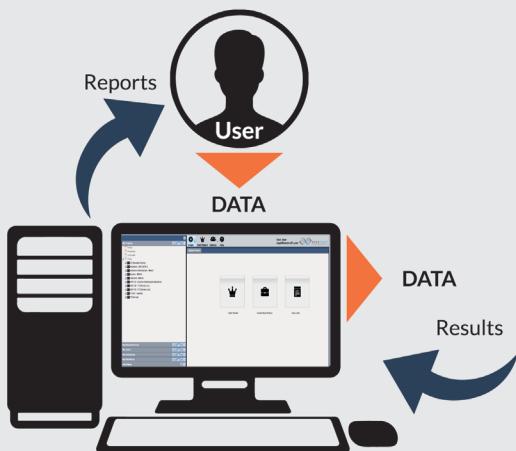
Custom Oligonucleotides

- ◆ Regular oligos
- ◆ Long oligos
- ◆ Phosphorothioated oligos (S-Oligos)
- ◆ Modified oligos
- ◆ Fluorescent oligos
- ◆ Taqman probes
- ◆ Molecular beacon
- ◆ Oligo pool & microarray

Custom Peptide Synthesis

- ◆ Purities from desalt to 98%
- ◆ Acetylation/Amidation
- ◆ Phosphorylated peptides
- ◆ Fluorescein/Biotin labeled peptides
- ◆ Specialty peptides with unnatural amino acids
- ◆ Cyclic peptides
- ◆ KLH/BSA/OVA Conjugation
- ◆ Multiple Antigenic Peptides
- ◆ Peptide nucleic acid (PNA)

Works in difficult to reach places.



In 2015, Ebola ravaged western Africa. Using Recombinase Polymerase Amplification (RPA) from TwistDx, a group of ground-breaking researchers created a solar-powered mobile lab that could begin to **detect Ebola virus in 3 minutes** without a thermocycler.

Read how RPA was used in the Ebola crisis
www.goo.gl/vwEfH9

RPA. It really works.
twistdx.co.uk | +44 (0)1223 496700

Introducing a comprehensive, multi-proprietary workbench for your research needs.

A combination of unique in-house softwares and open source modules to decipher your big data into meaningful results.

Standard/Customized Pipelines

Whole Genome Analysis
Exome Analysis
RNA Analysis
MiRNA Analysis
Methylation Analysis
Basic NGS Alignment

Get in touch with us to request for your **novoWorx** trial now.

Streamlined, user-friendly interface and interactive visual output for easy navigation and result interpretation

NOVOCRAFT TECHNOLOGIES SDN. BHD
C-23A-05, Two Square, Section 19, 46300, Petaling Jaya, Selangor, Malaysia

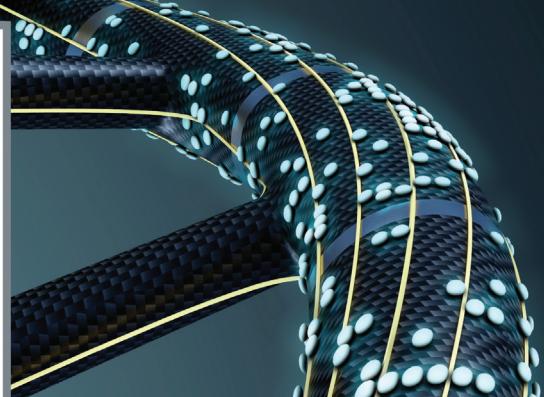
📞 +603 7960 0541 📩 office@novocraft.com
📞 +603 7960 0540 🌐 http://www.novocraft.com
🌐 Novocraft-Technologies-Sdn-Bhd

**Echo® Acoustic LIQUID HANDLING
for SYNTHETIC BIOLOGY**

Reduce DNA Assembly and QC Costs **100-Fold**

Echo® Liquid Handlers use acoustic energy to transfer DNA oligos and reagents, allowing the reduction of DNA assembly and NGS library preparation reaction volumes. Dramatically reduce reagent costs, save samples, and eliminate steps – all while improving the quality and throughput of synthetic genes.

100-fold reduction of Gibson or Golden Gate assembly reaction volumes


100-fold reduction of NGS library preparation volumes

Increased assembly and QC throughput

Automation to easily process thousands of assemblies

COMPARISON OF LIQUID HANDLING METHODS

	Manual Pipetting	Echo® Liquid Handler
Amount of DNA	50 ng	0.06 – 2.0 ng
DNA volume (Rxn)	25 µL	200 nL
Library prep volume (Rxn)	25 µL	300 nL
Total volume	50 µL	0.5 µL
Reactions per kit	96	9600
Cost per reaction	\$72.91	\$0.73

For more information, visit www.labcyte.com/synbio.

LABCYTE
The Future of Science is Sound

© 2016 LABCYTE INC. All rights reserved. Labcyte®, Echo®, and the Labcyte logo are registered trademarks or trademarks of Labcyte Inc., in the U.S. and/or other countries.

FOR RESEARCH USE ONLY. Not for use in diagnostic procedures.

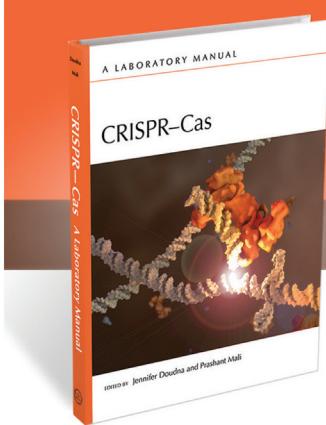
 [@Labcytelnc](https://twitter.com/Labcytelnc)
info-us@labcyte.com

Novogene

Leading Edge Genomic Services & Solutions

HiSeq X Ten
4000, 2500

**Whole Genome Sequencing
(Human, Plants and Animals),
Exome & RNA-Seq,
Epigenomics...**



QUALITY
Guaranteed Q30 > Illumina's

ANALYSIS
Expert bioinformatics
Publication ready reports

TECHNOLOGY
World's largest capacity
HiSeq X Ten (2 sets) & 4000

EXPERTISE
200 publications in top journals
10,000 projects completed

CRISPR-Cas

A Laboratory Manual

The essential guide to CRISPR-Cas

Edited by Jennifer Doudna, *University of California, Berkeley*;
Prashant Mali, *University of California, San Diego*

The development of CRISPR-Cas technology is revolutionizing biology. Based on machinery bacteria use to target foreign nucleic acids, these powerful techniques allow investigators to edit nucleic acids and modulate gene expression more rapidly and accurately than ever before.

Featuring contributions from leading figures in the CRISPR-Cas field, this laboratory manual presents a state-of-the-art guide to the technology. It includes step-by-step protocols for applying CRISPR-Cas-based techniques in various systems, including yeast, zebrafish, *Drosophila*, mice, and cultured cells (e.g., human pluripotent stem cells). The contributors cover web-based tools and approaches for designing guide RNAs that precisely target genes of interest, methods for preparing and delivering CRISPR-Cas reagents into cells, and ways to screen for cells that harbor the desired genetic changes. Strategies for optimizing CRISPR-Cas in each system—especially for minimizing off-target effects—are also provided.

Authors also describe other applications of the CRISPR-Cas system, including its use for regulating genome activation and repression, and discuss the development of next-generation CRISPR-Cas tools. The book is thus an essential laboratory resource for all cell, molecular, and developmental biologists, as well as biochemists, geneticists, and all who seek to expand their biotechnology toolkits.

2016, 192 pages, illustrated (20 color, 4 B&W), index

Paperback: Print Book + eBook \$210

Print Book \$110

eBook \$100

ISBN 978-1-621821-31-1

Hardcover: Print Book + eBook \$250

Print Book \$150

eBook \$100

ISBN 978-1-621821-30-4

Visit our website for special sale pricing!

eBook available exclusively at www.cshlpress.org

Contents

Preface

CHAPTER 1 Overview of CRISPR-Cas9 Biology

INTRODUCTION
Overview of CRISPR-Cas9 Biology
Hannah K. Ratner, Timothy R. Sampson, and David S. Weiss

CHAPTER 2 Guide RNAs: A Glimpse at the Sequences that Drive CRISPR-Cas Systems

INTRODUCTION
Guide RNAs: A Glimpse at the Sequences that Drive CRISPR-Cas Systems

Alexandra E. Briner and Rudolphe Barrangou

PROTOCOL

Prediction and Validation of Native and Engineered Cas9 Guide Sequences
Alexandra E. Briner, Emily D. Henriksen, and Rudolphe Barrangou

CHAPTER 3 Characterization of Cas9-Guide RNA Orthologs

INTRODUCTION

Characterization of Cas9-Guide RNA Orthologs
Jonathan L. Braff, Stephanie J. Yaung, Kevin M. Esvelt, and George M. Church

PROTOCOL

Characterizing Cas9 Protospacer-Adjacent Motifs with High-Throughput Sequencing of Library Depletion Experiments
Jonathan L. Braff, Stephanie J. Yaung, Kevin M. Esvelt, and George M. Church

CHAPTER 4 Large-Scale Single Guide RNA Library Construction and Use for CRISPR-Cas-Based Genetic Screens

INTRODUCTION

Large-Scale Single Guide RNA Library Construction and Use for CRISPR-Cas9-Based Genetic Screens
Tim Wang, Eric S. Lander, and David M. Sabatini

PROTOCOLS

Single Guide RNA Library Design and Construction
Tim Wang, Eric S. Lander, and David M. Sabatini

Viral Packaging and Cell Culture for CRISPR-Based Screens
Tim Wang, Eric S. Lander, and David M. Sabatini

CHAPTER 5 Adeno-Associated Virus-Mediated Delivery of CRISPR-Cas Systems for Genome Engineering in Mammalian Cells

PROTOCOL

Adeno-Associated Virus-Mediated Delivery of CRISPR-Cas Systems for Genome Engineering in Mammalian Cells
Thomas Gaj and David V. Schaffer

CHAPTER 6 Detecting Single-Nucleotide Substitutions Induced by Genome Editing

INTRODUCTION

Detecting Single-Nucleotide Substitutions Induced by Genome Editing
Yuichiro Miyaoka, Amanda H. Chan, and Bruce R. Conklin

PROTOCOL

Using Digital Polymerase Chain Reaction to Detect Single-Nucleotide Substitutions Induced by Genome Editing
Yuichiro Miyaoka, Amanda H. Chan, and Bruce R. Conklin

CHAPTER 7 CRISPR-Cas9 Genome Engineering in *Saccharomyces cerevisiae* Cells

PROTOCOL

CRISPR-Cas9 Genome Engineering in *Saccharomyces cerevisiae* Cells
Owen W. Ryan, Snigdha Poddar, and Jamie H.D. Cate

CHAPTER 8 Cas9-Mediated Genome Engineering in *Drosophila melanogaster*

INTRODUCTION

Cas9-Mediated Genome Engineering in *Drosophila melanogaster*
Benjamin E. Housden and Norbert Perrimon

PROTOCOLS

Design and Generation of Donor Constructs for Genome Engineering in *Drosophila*
Benjamin E. Housden and Norbert Perrimon

Detection of Indel Mutations in *Drosophila* by High-Resolution Melt Analysis (HRMA)
Benjamin E. Housden and Norbert Perrimon

Design and Generation of *Drosophila* Single Guide RNA Expression Constructs
Benjamin E. Housden, Yanhui Hu, and Norbert Perrimon

CHAPTER 9 Optimization Strategies for the CRISPR-Cas9 Genome-Editing System

INTRODUCTION

Optimization Strategies for the CRISPR-Cas9 Genome-Editing System
Charles E. Vejnar, Miguel Moreno-Mateos, Daniel Cifuentes, Ariel A. Bazzini, and Antonio J. Giraldez

PROTOCOL

Optimized CRISPR-Cas9 System for Genome Editing in Zebrafish
Charles E. Vejnar, Miguel Moreno-Mateos, Daniel Cifuentes, Ariel A. Bazzini, and Antonio J. Giraldez

CHAPTER 10 Editing the Mouse Genome Using the CRISPR-Cas9 System

INTRODUCTION

Editing the Mouse Genome Using the CRISPR-Cas9 System
Adam Williams, Jorge Henao-Mejia, and Richard A. Flavell

PROTOCOL

Generation of Genetically Modified Mice Using the CRISPR-Cas9 Genome-Editing System
Jorge Henao-Mejia, Adam Williams, Anthony Rongvaux, Judith Stein, Cynthia Hughes, and Richard A. Flavell

CHAPTER 11 Genome Editing in Human Pluripotent Stem Cells

INTRODUCTION

Genome Editing in Human Pluripotent Stem Cells
Cory Smith, Zhaohui Ye, and Linzhao Cheng

PROTOCOL

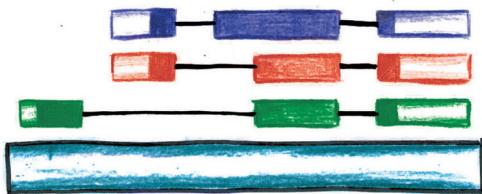
A Method for Genome Editing in Human Pluripotent Stem Cells
Cory Smith, Zhaohui Ye, and Linzhao Cheng

CHAPTER 12 An Introduction to CRISPR Technology for Genome Activation and Repression in Mammalian Cells

INTRODUCTION

An Introduction to CRISPR Technology for Genome Activation and Repression in Mammalian Cells
Dan Du and Lei S. Qi

PROTOCOL


CRISPR Technology for Genome Activation and Repression in Mammalian Cells
Dan Du and Lei S. Qi

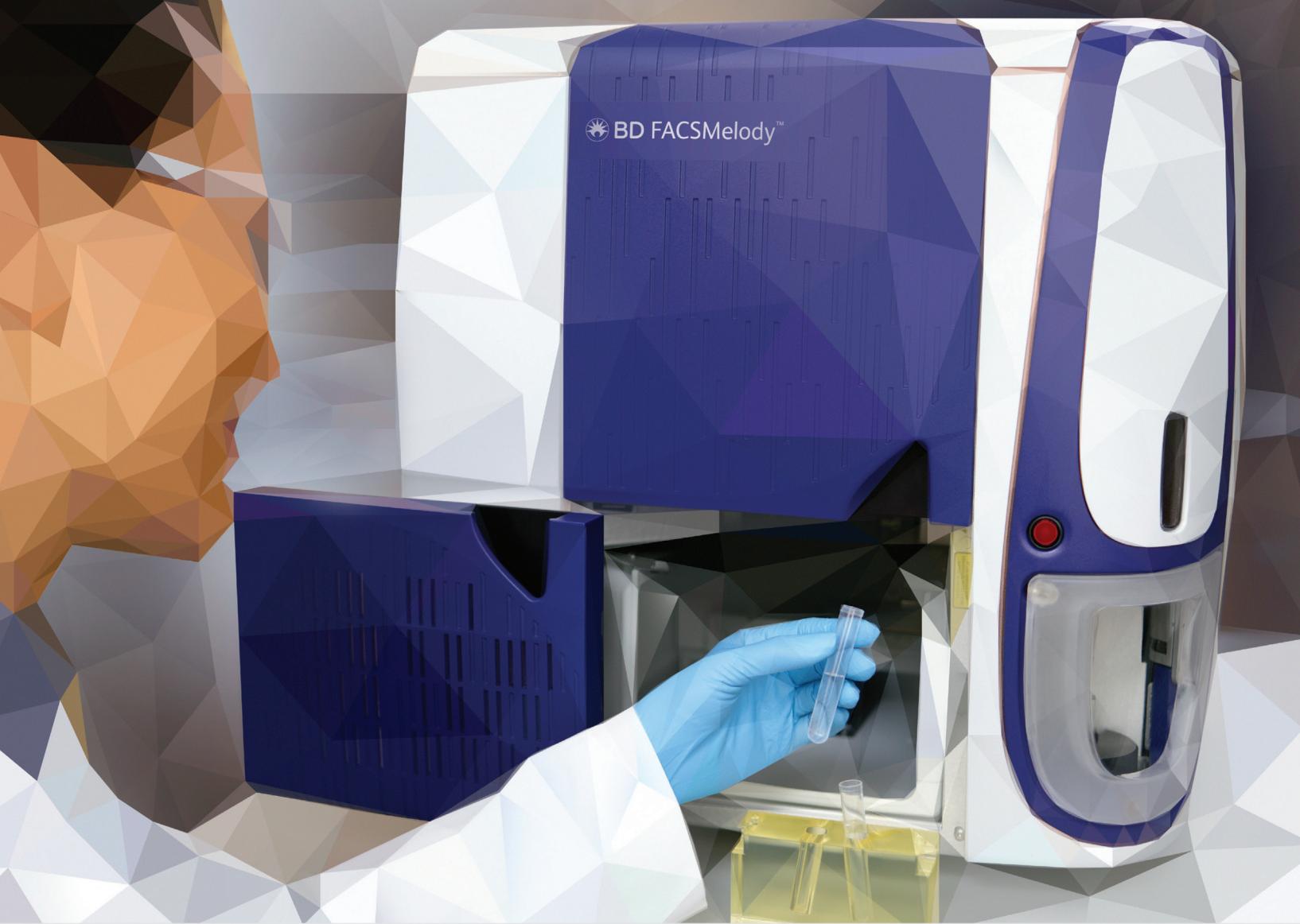
APPENDIX General Safety and Hazardous Material Information

INDEX

www.cshlpress.org

What if my RNA-Seq is wrong?

Only with SIRVs can you be confident.


Spike-in controls are essential in RNA-Seq experiments to assess workflow and platform properties. However, external RNA controls existing to date are generally mono-exonic and non-variant, significantly limiting their ability to reflect the true nature of eukaryotic transcriptomes. These are characterized by extensive splicing, alternative and antisense transcription, overlapping genes, and rare events like the formation of fusion genes. The performance of RNA preparation, library generation, sequencing, and bioinformatics algorithms can furthermore not be assessed adequately without known transcript spike-in controls of representative complexity.

To address this gap, Lexogen has conceived Spike-In RNA Variants (SIRVs) for the quantification of mRNA isoforms in Next Generation Sequencing. The accuracy of mapping, isoform assembly and quantification can be assessed, making isoform-quantification based experiments comparable.

SIRVs (Spike-in RNA Variant Control Mixes)

- ✓ 69 artificial transcript variants representing alternative splicing, promoter and poly(A) site usage, overlapping genes, and antisense transcription.
- ✓ Validation of the RNA-Seq pipeline.
- ✓ Quantification of differential expression on the transcript level.

THE DIFFERENCE OF **ONE SIMPLE SORT**

ONE RESEARCHER, ONE SORTER, ONE CELL, MANY DISCOVERIES. BD is dedicated to developing easy-to-use cell sorting technologies that simplify accurate and reliable flow cytometry. The BD FACSMelody™ cell sorter introduces a powerful combination of high performance, reproducible results and automated ease of use from a brand whose integrated flow cytometry portfolio and rigorous standards you can trust. BD FACSMelody is an affordable cell sorter that requires minimal training making it an ideal solution to advance your research. Its software guides the operator through every step, with a system sort readiness of less than 15 minutes for optimal timeliness. Designed to improve efficiency and throughput, it comes with the full suite of BD service and support to help you maximize your investment. Learn more about the one cell sorter that is easy to learn, to use and to maintain. Discover the difference one company can make. **Discover the new BD.**

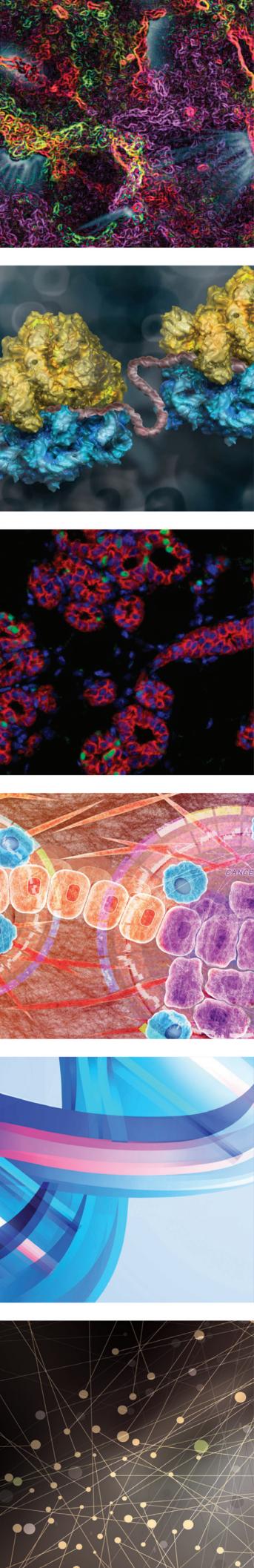
Learn more about the Difference of One at bd.com/GR-SimpleSort

Class 1 Laser Product.
For Research Use Only. Not for use in diagnostic or therapeutic procedures.
© 2016 BD. BD, the BD Logo and BD FACSMelody are trademarks of Becton, Dickinson and Company.
23-18464-00 MC6344

Win a BenchSmart 96!

Introducing the Rainin BenchSmart™ 96 – a smarter approach to automated 96- and 384-well pipetting.*

- Three interchangeable heads – pipette from 0.5 μ L to 1000 μ L
- Programmable features, such as mixing and multi-dispense
- Automated tip loading for perfect seals on all 96 channels
- Manual x-y-z movement of the pipetting head
- Large touchscreen – so easy and intuitive, everyone in the lab will want to use it


*** Enter to win!**

See our drawing for a free BenchSmart 96 at ▶ www.mt.com/Rainin-BenchSmart

This promotion ends October 31, 2016.

Mettler-Toledo Rainin, LLC, Oakland, California 94621

METTLER TOLEDO

2016-2017 SCIENTIFIC CONFERENCES

Presenting the most significant research on cancer etiology, prevention, diagnosis, and treatment

DNA Repair: Tumor Development and Therapeutic Response

Co-Chairpersons: Robert G. Bristow, Maria Jasin, and Theodore S. Lawrence
November 2-5, 2016 • Montreal, Quebec, Canada

New Horizons in Cancer Research: Delivering Cures Through Cancer Science

Co-Chairpersons: José Baselga and Scott A. Armstrong
November 2-5, 2016 • Shanghai, P.R. China

Improving Cancer Risk Prediction for Prevention and Early Detection

Co-Chairpersons: Graham A. Colditz, Susan M. Gapstur, Kenneth R. Muir, and Mark E. Sherman
November 16-19, 2016 • Orlando, FL

EORTC-NCI-AACR Molecular Targets and Cancer Therapeutics Symposium

Co-Chairpersons: Jean-Charles Soria, Lee J. Helman, and Levi A. Garraway
November 29-December 2, 2016
Munich, Germany

San Antonio Breast Cancer Symposium Presented by CTRC-AACR-BCM

Co-Directors: Carlos L. Arteaga, Virginia G. Kaklamani, and C. Kent Osborne
December 6-10, 2016 • San Antonio, TX

Precision Medicine Series: Opportunities and Challenges of Exploiting Synthetic Lethality in Cancer

Co-Chairpersons: René Bernards, William C. Hahn, and Louis M. Staudt

January 4-7, 2017 • San Diego, CA

AACR International Conference on New Frontiers in Cancer Research

Co-Chairpersons: Peter A. Jones and Frank McCormick
January 18-22, 2017 • Cape Town, South Africa

AACR Annual Meeting 2017

Program Committee Chairperson: Kornelia Polyak
April 1-5, 2017 • Washington, DC

AACR-AHNS Head and Neck Cancer Conference: Optimizing Survival and Quality of Life Through Basic, Clinical, and Translational Research

Chairperson: Jeffrey N. Myers
Co-Chairpersons: Jennifer Rubin Grandis, J. Silvio Gutkind, Quynh-Thu Le
April 23-25, 2017 • San Diego, CA

AACR International Conference on Translational Cancer Medicine

Co-Chairpersons: Carlos L. Arteaga and Carlos Gil M. Ferreira
May 4-6, 2017 • São Paulo, Brazil

International Conference on Malignant Lymphoma (ICML)

Co-Chairpersons: James O. Armitage, Martin F. Fey, and Emanuele Zucca
Hosting Chairperson: Franco Cavalli
June 14-17, 2017 • Lugano, Switzerland

EACR-AACR-SIC Special Conference 2017: The Challenges of Optimizing Immuno and Targeted Therapies: From Cancer Biology to the Clinic

Co-Chairpersons: Anton J.M. Berns, Nancy E. Davidson, and Silvia Giordano
June 24-27, 2017 • Florence, Italy

Advances in Modeling Cancer in Mice: Technology, Biology, and Beyond

Co-Chairpersons: Cory Abate-Shen, Kevin M. Haigis, Katerina A. Politis, and Julien Sage
September 24-27, 2017 • Orlando, FL

The Science of Cancer Health Disparities in Racial/Ethnic Minorities and the Medically Underserved

Co-Chairpersons to be announced
September 25-28, 2017 • Atlanta, GA

Learn more and register at
AACR.org/Calendar

AACR American Association
for Cancer Research
FINDING CURES TOGETHER™

Decoding the Language of Genetics

By David Botstein, Lewis-Sigler Institute for Integrative Genomics

In this book, the distinguished geneticist David Botstein offers help and advice to scientists and physicians daunted by the arcane technical terms that flourish in his discipline. The science of gene function has a vocabulary of specialized, sometimes confusing terms to explain how traits and diseases are inherited, how genes are organized and regulated in the genome, and how the genetic code is read and translated by cells. These terms are often a barrier to full understanding of the underlying concepts. Yet, as more and more individuals learn about their genomes, the information these sequences contain cannot be understood or explained without reference to the basic ideas of genetics. Botstein draws on his long experience as a teacher and pioneering scientist to explain and illuminate what many genetic terms mean and how they entered common usage.

2015, 240 pages, illustrated (30 4C, 10 B&W), index

Hardcover \$79

ISBN 978-1-621820-92-5

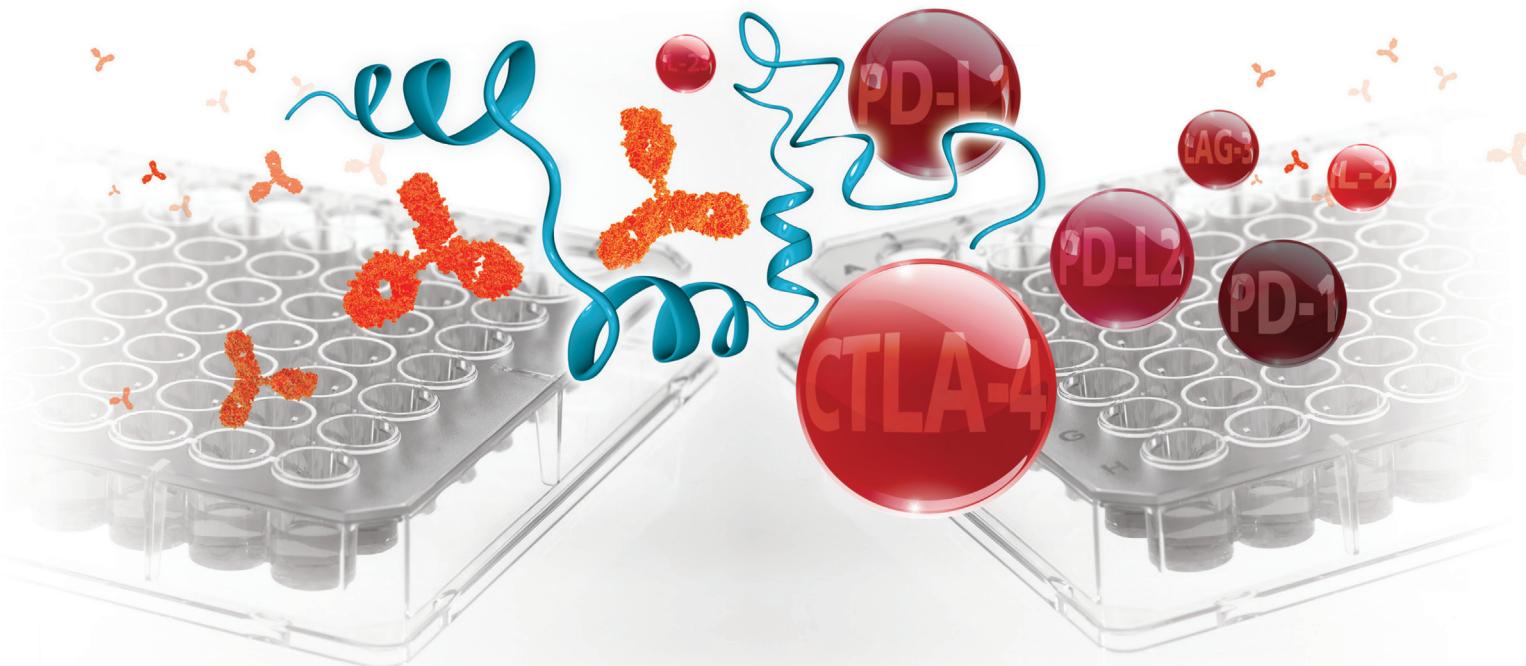
Contents

- Preface
- Acknowledgments
- 1 The Basics
- 2 Implicit Experiments and the Functional Gene
- 3 Recombination and Linkage Mapping
- 4 Pathway Analysis
- 5 Regulation of Metabolic Pathways
- 6 Phage and the Beginning of Molecular Genetics
- 7 Transcription, Translation, and the Genetic Code
- 8 Suppression Genetics

- 9 Functional Suppression
- 10 The Genetics of Complex Phenotypes
- 11 Transcriptional Regulation of Gene Expression
- 12 The Modular Architecture of Genes and Genomes
- 13 Evolution Conserves Functional Sequences
- 14 Human Population Genetics
- 15 Inferring Human Gene Function from
Disease Alleles
- 16 What Is Next in Genetics and
Genomics?
- Index

WE MAKE DATA USEFUL. YOU MAKE THE DISCOVERIES.

Our bioinformaticians make The Cancer Genome Atlas (TCGA) data usable. More than a petabyte of multidimensional cancer genomic data from 11,328 patients, 140 metadata fields, and over 200 tools and workflows — all ready for immediate analysis in the cloud.



sevenbridges.com/usefuldata

SevenBridges

Immunoassays for immuno-oncology research

Move confidently across platforms

Immune checkpoints have come to the forefront of cancer therapies as a powerful and promising strategy to stimulate anti-tumor T cell activity. Affymetrix provides a wide range of products for immune-oncology research for the quantification of these important checkpoint proteins. ProcartaPlex® Human Immuno-oncology Checkpoint Panel enables simultaneous quantification of 14 checkpoint modulators. Speed, sensitivity, and specificity make Platinum ELISA the method of choice for biomarker evaluation.

Affymetrix offers multiple immunoassay platforms, providing the freedom to move from a multiplex assay to an ELISA while producing comparable data.

- 98% correlation of antibody pairs across platforms
- Lot-to-lot consistency for reliable reproducibility
- Exceptional scalability between ProcartaPlex® assays and traditional Platinum ELISA

Visit our website to learn more about the ProcartaPlex® Human Immuno-oncology Checkpoint Marker Panel and Platinum ELISA

www.ebioscience.com/immuno-oncology

© 2016 Affymetrix, Inc. All rights reserved. For Research Use Only. Not for use in diagnostic procedures.

eBioscience

GeneChip

USB