

BLOW UP THE OLD WAY OF TESTING gDNA

Whole-genome QC now has one workflow.

FULLY AUTOMATED **FRAGMENT ANALYZER™** DOES IT ALL.

- Assesses gDNA concentration up to 40,000 bp
- Generates a user-defined Genomic Quality Number
- Identifies RNA contamination in gDNA
- Works with samples as small as 0.1 μ L

More at AATI-US.COM

isothermal detection of RNA

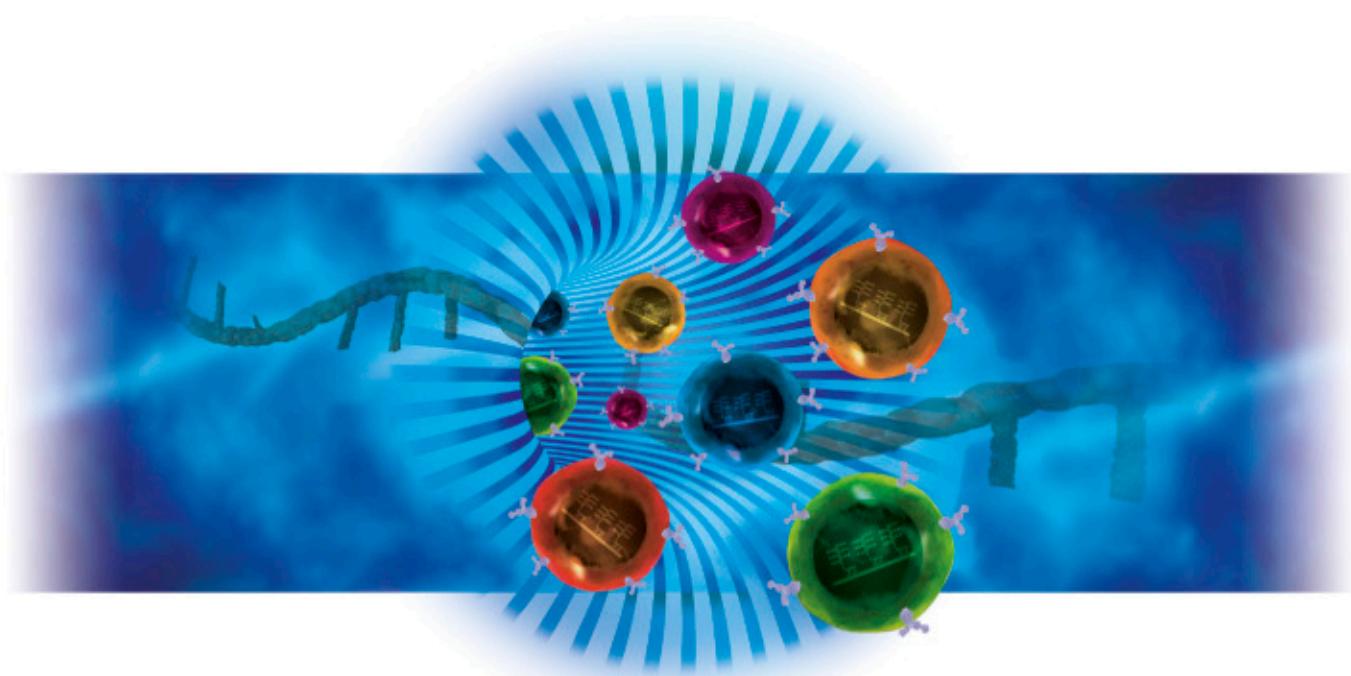
- Rapid detection in minutes
- Single molecule sensitivity
- Little or no hardware requirements
- Easy to use, stable lyophilised reagents

TwistAmp® exo RT

Real-time fluorescent RNA detection

Using TwistDx's RPA technology, the exo RT kit is recommended for detecting RNA targets with a proprietary fluorescent TwistAmp® exo probe in a one-step process.

TwistDx


www.twistdx.co.uk

Imagine if you could detect RNA and protein in millions of single cells

Enter a new dimension of single-cell analysis

Detect RNA and protein simultaneously by flow cytometry to:

- See gene expression heterogeneity at the single-cell level
- Compare RNA and protein in the same cell
- Evaluate viral RNA within infected cells
- Detect non-coding RNA in cell subsets
- Analyze mRNA expression levels when antibody selection is limited

**Download
White Paper**

Download your copy of the PrimeFlow™ RNA Assay Validation White Paper at www.ebioscience.com/primeflow-white-paper-genres

Biology for a better world.

NORTH AMERICA: 888.999.1371 ▪ EUROPE: +43 1 796 40 40-305 ▪ JAPAN: +81 (0)3 6430 4020 ▪ INQUIRIES: info@ebioscience.com

©Affymetrix, Inc. All rights reserved. For Research Use Only. Not for use in diagnostic or therapeutic procedures.

eBioscience

GeneChip

USB

Reduce your NGS Sequencing Costs with Improved Library Complexity

Accel-NGS™ 2S DNA Library kit for Illumina® Platforms

- Broad input range: 10 pg to 1 µg, PCR-free libraries from 10 ng
- Exceptional coverage of AT-rich & GC-rich sequences
- Superior library complexity
- Tremendously efficient adapter technology

Targeted sequencing, now for any genome

Improve your research by using
Ion AmpliSeq™ DNA custom panels

Ion Torrent™

Harness the power of Ion Torrent™ technology for a simple, scalable, and affordable sequencing solution. Create targeted DNA panels customized for fast and efficient variant detection using one of our preloaded genomes or by uploading a private reference sequence.

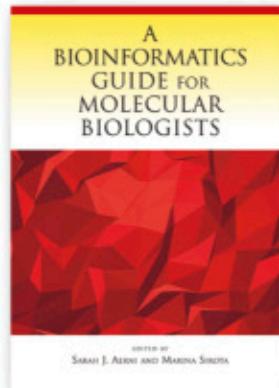
Find out more at lifetechnologies.com/ampliseqcustom

life
technologies

For Research Use Only. Not for use in diagnostic procedures. © 2015 Thermo Fisher Scientific Inc. All rights reserved.
All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. C013488 0115

A Thermo Fisher Scientific Brand

A BIOINFORMATICS GUIDE FOR MOLECULAR BIOLOGISTS


Edited by Sarah Aerni and Marina Sirota, *Biomedical Informatics Program, Stanford University School of Medicine*

Informatics can vastly assist progress in research and development in cell and molecular biology and biomedicine. However, many investigators are either unaware of the ways in which informatics can improve their research or find it inaccessible due to a feeling of "informatics anxiety." This sense of apprehension results from improper communication of the principles behind these approaches and of the value of the many tools available. In fact, many researchers are inherently distrustful of these tools. A more complete understanding of bioinformatics offered in *A Bioinformatics Guide for Molecular Biologists* will allow the reader to become comfortable with these techniques, encouraging their use—thus helping to make sense of the vast accumulation of data. To make these concepts more accessible, the editors approach the field of bioinformatics from the viewpoint of a molecular biologist, (1) arming the biologist with a basic understanding of the fundamental concepts in the field, (2) presenting approaches for using the tools from the standpoint of the data for which they are created, and (3) showing how the field of informatics is quickly adapting to the advancements in biology and biomedical technologies. All concepts are paired with recommendations for the appropriate programming environment and tools best suited to solve the particular problem at hand. It is a must-read for those interested in learning informatics techniques required for successful research and development in the laboratory.

2014, 328 pp, illustrated (64 4C, 26 B&W), index

Hardcover \$79

ISBN 978-1-936113-22-4

Contents

Preface

Section 1: Introduction and Overview

- 1 Introduction to Computational Approaches for Biology and Medicine
Sarah J. Aerni and Marina Sirota

Section 2: Fundamental Concepts

- 2 Introduction to Computer Science
Eugene Davydov and Olga Russakovsky
- 3 Probability and Statistics
Alexander A. Morgan and Linda Miller
- 4 Machine Learning
Marc A. Schaub and Chuong B. Do

Section 3: Techniques for Analyzing Your Data

- 5 Image Analysis
Marina Sirota, Sarah J. Aerni, Tiffany Liu, and Guanglei Xiong
- 6 Expression Data
David Ruau
- 7 A Gentle Introduction to Genome-Wide Association Studies
Chuong B. Do, Marc A. Schaub, Marina Sirota, and Karen Lee
- 8 Next-Generation Sequencing Technologies
Jesse Rodriguez and George Asimenos
- 9 Proteomics
Amit Kaushal and Tiffany J. Chen

Section 4: Augmenting Your Data

- 10 Knowledge Base-Driven Pathway Analysis
Purvesh Khatri
- 11 Learning Biomolecular Pathways from Data
Karen Sachs and Gabriela K. Fragiadakis
- 12 Meta-Analysis and Data Integration of Gene Expression Experiments
Chirag J. Patel and Andrew H. Beck
- 13 Natural Language Processing: Informatics Techniques and Resources
Bethany Percha and Wei-Nchih Lee

Index

www.cshlpress.org

Looking for A Genomic Research Partner?

Next-Generation Sequencing(NGS)

Whole genome Sequencing (Hiseq X Ten)
Exome Sequencing
Trargeted Sequencing
Long Read Sequencing
Transcriptome Analysis, small RNA
Epigenomics

Bio Informatics

Assembly / Mapping
Variant (SNP / Indel) calling
CNV & Breakpoints
Expression Profiles
DEGs / miRNA
Enrichment Profiles
Gene Annotation

Capillary Sequencing

Microarray

Oligonucleotide Synthesis

Genetically Engineered Mouse

Next-Gen Sequencing

Challenged with low-input samples for ChIP-seq?

LIBRARY PREPARATION FOR NEXT-GEN SEQUENCING

Ligation-free ChIP-seq library prep for low-input DNA samples

The New DNA SMART™ ChIP-Seq Kit

Template switching technology, optimized for DNA

The DNA SMART ChIP-Seq Kit generates Illumina® sequencing libraries from as little as 100 pg of either single-stranded or double-stranded DNA. This kit generates sensitive sequencing libraries without using ligation, which streamlines the protocol and improves library yield and complexity. Using a novel version of Clontech's patented SMART® template switching technology compatible with low-input, fragmented DNA templates, the DNA SMART ChIP-Seq Kit generates robust, reproducible ChIP-seq libraries in around 4 hours.

View a webinar at
www.clontech.com/ChIP-Seq-Webinar-Signup
or call 1.800.662.2566

Scan to find out more

Takara Clontech

Clontech Laboratories, Inc. • A Takara Bio Company

United States/Canada: +1.800.662.2966 • Asia Pacific: +1659.919.7300 • Europe: +33.16.13904.6880 • Japan: +81.0177.543.7474
For Research Use Only. Not for use in diagnostic or therapeutic procedures. Not for resale. Illumina is a registered trademark of Illumina Inc. Takara and the Takara logo are trademarks of TAKARA HOLDINGS, Kyoto, Japan. Clontech, the Clontech logo, DNA SMART, SMART and their 3D logo are trademarks of Clontech Laboratories, Inc. All other marks are the property of their respective owners. Certain trademarks may not be registered in all jurisdictions. © 2015 Clontech Laboratories, Inc.

www.clontech.com 03-15-US-633643

The Most Advanced Tumor Profiling and Informatics

Accuracy and Content Enhanced (ACE) Cancer Services for Cancer Research and Clinical Trials

Personalis® ACE Cancer Services

The Most Complete and Accurate Solutions for Tumor Profiling

Personalis' portfolio of cancer research solutions provides increased sensitivity to detect variants in cancer-associated genes, and provides improved resolution for applications such as tumor stratification, therapeutic response association studies, and identification of potential targets for companion diagnostics. Our sequencing capabilities include both high-depth augmented exome sequencing and RNA-Seq. These assays can be performed from a single sample to provide a comprehensive description of the tumor including somatic variants, low abundance SVs, fusion transcripts, and more – all from the same tumor sample.

- ✓ Enhanced coverage of 1,300+ cancer genes and 200+ miRNA genes
- ✓ Coverage of intronic and intergenic variants
- ✓ Analysis of DNA and RNA from a single sample
- ✓ Comprehensive coverage of key cancer pathway genes
- ✓ High accuracy somatic variant (DNA) and fusion event (RNA) calling

enhanced
coverage of
1,300+
cancer genes
and 200+
miRNA genes

www.personalis.com/cancer

© 2015 Personalis, Inc. All rights reserved. Personalis® is a registered trademark of Personalis, Inc., in the United States and/or other countries.

For Research Use Only

www.personalis.com | info@personalis.com

+1 855-GENOME4 (436-6634)

+1 650-752-1300 (outside U.S.)

Power your next big breakthrough.

Sequencing power for every scale.

NEW

HiSeq X™ Series

Population power

Maximum throughput and low cost population- and production-scale human whole-genome sequencing. Series includes the HiSeq X Ten and the new HiSeq X Five Systems.

NEW

HiSeq® Series

Production power

Maximum throughput and lowest cost for production-scale genomics. Series includes the new HiSeq 3000 and HiSeq 4000 Systems.

NEW

NextSeq® Series

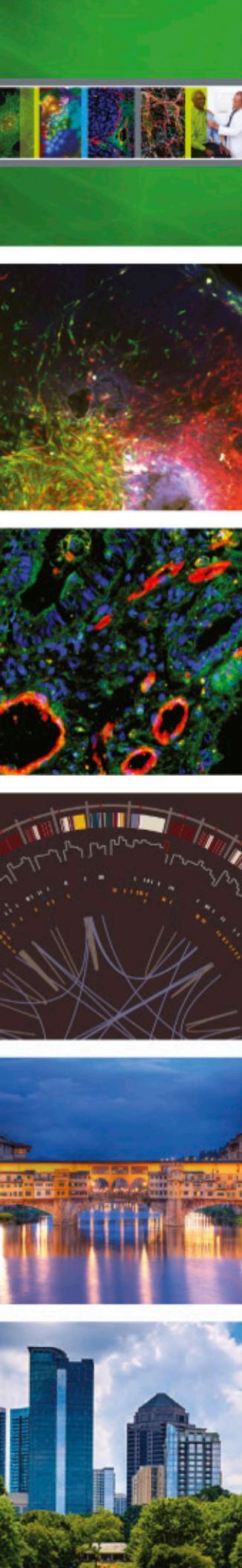
Flexible power

Desktop speed and simplicity for everyday genomics. Series includes the NextSeq 500 and the new NextSeq 550 with cytogenomic array scanning.

MiSeq® Series

Focused power

Speed and simplicity for targeted and small-genome sequencing. Series includes the MiSeq and MiSeqDx™ Systems.*


Compare our new systems with our product selector at www.illumina.com/power.

FOR RESEARCH USE ONLY

*MiSeqDx™ is a 510(k) cleared, CE-marked instrument. See instructions for use.

©2015 Illumina, Inc. All rights reserved.

illumina®

2015 SCIENTIFIC CONFERENCES

Presenting the most significant research on cancer etiology, prevention, diagnosis, and treatment

AACR Annual Meeting 2015

Program Committee Chairperson: Lewis C. Cantley
April 18-22, 2015 • Philadelphia, PA

Advances in Brain Cancer Research

Co-Chairpersons: Eric C. Holland, Franziska Michor, Martine F. Roussel, and Michael D. Taylor
May 27-30, 2015 • Washington, DC

Metabolism and Cancer

Co-Chairpersons: Ralph J. DeBerardinis, David M. Sabatini, and Almut Schulze
June 7-10, 2015 • Bellevue, WA

Methods in Cancer Biostatistics Workshop:

Clinical Trial Designs for Targeted Agents

Chairperson: Steven Piantadosi
June 7-13, 2015 • Lake Tahoe, CA

AACR Precision Medicine Series: Integrating Clinical Genomics and Cancer Therapy

Co-Chairpersons: Charles L. Sawyers, Elaine R. Mardis, and Arul M. Chinnaiyan
June 13-16, 2015 • Salt Lake City, UT

EACR-AACR-SIC Special Conference on Anticancer Drug Action and Drug Resistance:

From Cancer Biology to the Clinic

Co-Chairpersons: Richard M. Marais, Pasi Jänne, and Riccardo Dolcetti
June 20-23, 2015 • Florence, Italy

Chromatin and Epigenetics in Cancer

Co-Chairpersons: Peter A. Jones, Sharon Y. R. Dent, and Charles W. M. Roberts
September 24-27, 2015 • Atlanta, GA

CRI-CIMT-EATI-AACR The Inaugural International Cancer Immunotherapy Conference: Translating Science into Survival

September 27-30, 2015 • New York, NY

Advances in Breast Cancer Research

Co-Chairpersons: Matthew J. Ellis, Charles M. Perou, and Jane E. Visvader
October 17-20, 2015 • Bellevue, WA

Advances in Ovarian Cancer

Co-Chairpersons: Kathleen R. Cho, Douglas A. Levine, and Benjamin G. Neel
October 17-20, 2015 • Orlando, FL

Fourth AACR International Conference on Frontiers in Basic Cancer Research

Chairperson: M. Celeste Simon;
Co-Chairpersons: James P. Allison, John E. Dick, Nathanael S. Gray, and Victor E. Velculescu
October 23-26, 2015 • Philadelphia, PA

Basic Science of Sarcomas

Co-Chairpersons: Robert G. Maki, Angelo Paolo Dei Tos, Jonathan A. Fletcher, Lee J. Helman, and Brian Van Tine
November 3-4, 2015 • Salt Lake City, UT

New Horizons in Cancer Research

Co-Chairpersons: Lewis C. Cantley and Carlos L. Arteaga
November 2015 • Shanghai, China

AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics

Scientific Committee Co-Chairpersons: Levi A. Garraway, Lee J. Helman, and Jean-Charles Soria
November 5-9, 2015 • Boston, MA

Pediatric Oncology

Co-Chairpersons: Scott Armstrong, Charles G. Mullighan, Kevin M. Shannon, and Kimberly Stegmaier
November 9-12, 2015 • Fort Lauderdale, FL

Developmental Biology and Cancer

Co-Chairpersons: Hans Clevers, Stuart Orkin, and Suzanne Baker
November 30-December 3, 2015 • Boston, MA

Tumor Metastasis

Co-Chairpersons: Bruce R. Zetter, Melody A. Swartz, and Jeffrey W. Pollard
November 30-December 3, 2015 • Austin, TX

Noncoding RNAs and Cancer

Co-Chairpersons: Howard Y. Chang, Jeannie T. Lee, Joshua Mendell
December 4 - 7, 2015 • Boston, MA

CROPS 2015

improving agriculture through genomics

May 18 – 21, 2015

HUDSONALPHA INSTITUTE FOR BIOTECHNOLOGY
HUNTSVILLE, AL USA

CROPS 2015 *provides a discussion forum for what is the next, most difficult challenge for plant genomics: integrating and translating genomic knowledge to improve breeding and crop production.*

Abstract deadline
April 1, 2015

Early Booking deadline
April 17, 2015

Register today at **CROPSconference.org**

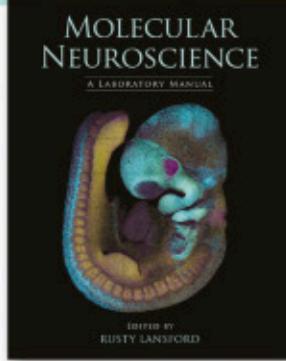
KEYNOTE SPEAKERS

Gerald A. Tuskan
Joint Genome Institute

Steve Rounseley
DOW AgroSciences

PRESENTED BY

HUDSONALPHA
INSTITUTE FOR BIOTECHNOLOGY


**INSTITUTE OF
PLANT BREEDING,
GENETICS & GENOMICS
at UGA.**

The University of Georgia

MOLECULAR NEUROSCIENCE

A Laboratory Manual

Edited by Rusty Lansford, *California Institute of Technology*

This laboratory manual serves as a comprehensive practical guide to molecular and cellular step-by-step methods for neuroscientists, detailing fundamental and advanced techniques for working with cells, DNA, RNA, gene transfer, and imaging. The techniques included in this manual were developed in the Advanced Techniques in Molecular Neuroscience course offered annually at Cold Spring Harbor Laboratory, as well as protocols drawn from its best-selling lab manuals. It is an essential resource for all neuroscientists, from graduate students upward, who seek to use molecular techniques to probe the complexities of the nervous system.

2014, 648 pp., illus. (64 4C, 50 B&W), index

Hardcover \$150

Paperback \$90

ISBN 978-1-621820-13-0

ISBN 978-1-621820-14-7

CONTENTS

Foreword

Preface

SECTION 1. WORKING WITH CELLS

- Working without Contamination
- Sterile Pipetting and Pouring Techniques
- Filter Sterilization Techniques
- Aspirating Fluids with Sterile Technique
- Working Sterilely in a Biosafety Cabinet
- Mammalian Cell Culture
- Purification and Culture of Retinal Ganglion Cells
- Purification and Culture of Retinal Ganglion Cells from Rodents
- Purification and Culture of Astrocytes
- Purification of Rat and Mouse Astrocytes by Immunopanning
- Maintaining Live Cells and Tissue Slices in the Imaging Setup

SECTION 2. WORKING WITH DNA

BACTERIA BASICS

- Bacteria
- Making Media for Bacterial Culture
- Obtaining Isolated Colonies of Bacteria
- Using a Petroff-Hausser Counting Chamber
- Measurement of Bacterial Growth by Spectrophotometry
- Freezing Bacteria for Long-Term Storage

DNA BASICS

- Preparation of Plasmid DNA by Alkaline Lysis with Sodium Dodecyl Sulfate: Minipreparation
- Preparation and Transformation of Competent *E. coli* Using Calcium Chloride
- Quantitation of DNA and RNA
- The Basic Polymerase Chain Reaction
- Optimization and Troubleshooting in Polymerase Chain Reaction
- Working with Bacterial Artificial Chromosomes
- Isolation of Bacterial Artificial Chromosome DNA from Small-Scale Cultures
- Homologous Recombination Using Bacterial Artificial Chromosomes
- Bacterial Artificial Chromosome Transgenic Mice and the GENSAT Database of Engineered Mouse Strains
- Agarose Gel Electrophoresis
- Southern Blotting: Capillary Transfer of DNA to Membranes
- Southern Hybridization of Radiolabeled Probes to Nucleic Acids Immobilized on Membranes

PROTEIN-DNA INTERACTIONS

- Electrophoretic Mobility-Shift Assays
- Chromatin Immunoprecipitation (ChIP)
- Analysis of Protein-DNA Interactions
- Formaldehyde Cross-Linking
- Preparation of Cross-Linked Chromatin for ChIP
- ChIP
- ChIP-Quantitative Polymerase Chain Reaction (ChIP-qPCR)
- ChIP-chip
- ChIP-seq

SECTION 3. WORKING WITH RNA

RNA BASICS

- The Fundamentals of RNA Purification
- General Procedures for Avoiding Contamination with RNase
- Purification of RNA from Cells and Tissues by Acid Phenol-Guanidinium Thiocyanate-Chloroform Extraction
- Isolating Total RNA from Mouse Embryos or Fetal Tissues
- Single-Neuron Isolation for RNA Analysis
- Using Pipette Capture and Laser Capture Microdissection
- Antisense RNA Amplification for Target Assessment of Total mRNA from a Single Cell
- Denaturation and Electrophoresis of RNA with Formaldehyde
- Northern Blots: Capillary Transfer of RNA from Agarose Gels and Filter Hybridization Using Standard Stringency Conditions
- Combinatorial Analysis of mRNA Expression Patterns in Mouse Embryos Using Hybridization Chain Reaction
- Electrophoretic Mobility Shift Assays for RNA-Protein Complexes
- RNA Footprinting to Map Sites of RNA-Protein Interactions
- Identification of RNA Cargoes by Antibody-Positioned RNA Amplification
- CLIP (Cross-Linking and Immunoprecipitation) Identification of RNAs Bound by a Specific Protein

TRANSCRIPTOME ANALYSIS

- Transcriptome Analysis Using Microarrays*
- Preparation of Fluorescent-Dye-Labeled cDNA from RNA for Microarray Hybridization
- Microarray Slide Hybridization Using Fluorescently Labeled cDNA
- Scanning Microarray Slides

- Tips on Hybridizing, Washing, and Scanning Affymetrix Microarrays
- Methods for Processing Microarray Data

Transcriptome Analysis with High-Throughput Sequencing

- Fragmentation of Whole-Transcriptome RNA Using *E. coli* RNase III
- Preparation of Small RNA Libraries for High-Throughput Sequencing
- Tips for Preparing mRNA-Seq Libraries from Poly(A)+ mRNA for Illumina Transcriptome High-Throughput Sequencing
- High-Throughput Illumina Strand-Specific RNA Sequencing Library Preparation
- Methods for Processing High-Throughput RNA Sequencing Data

RNAi

- Creating an miR30-Based shRNA Vector
- Packaging shRNA Retroviruses
- Infection of Mammalian Cells with Retroviral shRNAs
- Creating Transgenic shRNA Mice by Recombinase-Mediated Cassette Exchange

SECTION 4. GENE TRANSFER

Nonviral Methods

- DNA Transfection Mediated by Lipofection
- Transfection of Mammalian Cells with Fluorescent Protein Fusions
- DNA Transfection by Electroporation
- PiggyBac Transposon-Mediated Cellular Transgenesis in Mammalian Forebrain by In Utero Electroporation
- Single Cell/Cellular Subregion-Targeted Phototransfection

VIRAL METHODS

- Generation and Analysis of Lentivirus
- Expressing a 2A Peptide-Linked Bicistronic Fluorescent Construct
- Lentiviral Vectors for Retrograde Delivery of Recombinases and Transactivators
- Rabies Viral Vectors for Monosynaptic Tracing and Targeted Transgene Expression in Neurons
- Concentration and Purification of Rabies Viral and Lentiviral Vectors
- Stable Producer Cell Lines for Adeno-Associated Virus (AAV) Assembly
- Generation of Replication-Competent and -Defective Herpes simplex Virus (HSV) Vectors
- Construction and Packaging of Herpes simplex Virus/Adeno-Associated Virus (HSV/AAV) Hybrid Amplicon Vectors

SECTION 5. IMAGING

MICROSCOPY BASICS

- Microscopy
- Using the Light Microscope
- Confocal Microscopy: Principles and Practice
- Principles of Multiphoton-Excitation
- Fluorescence Microscopy
- Digital Scanned Laser Light Sheet
- Fluorescence Microscopy

LIGHT MODULATION OF PROTEINS

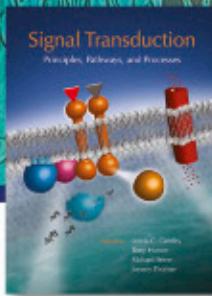
- Constructing and Expressing Fluorescent Protein Fusions
- Imaging Green Fluorescent Protein-Labeled Neurons Using Light and Electron Microscopy
- Imaging Synaptic Protein Dynamics Using Photoactivatable Green Fluorescent Protein
- Imaging Neuronal Activity with Genetically Encoded Calcium Indicators
- Measuring Membrane Voltage with Fluorescent Proteins
- Optogenetics: Opsins and Optical Interfaces in Neuroscience
- Establishing a Fiber-Optic-Based Optical Neural Interface

IN VIVO IMAGING

- Single-Cell Electroporation in *Xenopus*
- Single-Cell Electroporation of *Xenopus* Tadpole Tectal Neurons
- In Vivo Time-Lapse Imaging of Neuronal Development in *Xenopus*
- Bulk Electroporation of Retinal Ganglion Cells in Live *Xenopus* Tadpoles
- 4D Fluorescent Imaging of Embryonic Quail Development
- Preparation and 4D Fluorescent Imaging of Quail Embryos
- Generating and Imaging Multicolor Rainbow Mice
- Two-Photon Imaging of Microglia in the Mouse Cortex In Vivo
- Mapping Anatomy to Behavior in Thy1:18 ChR2-YFP Transgenic Mice Using Optogenetics

APPENDIX

- General Safety and Hazardous Material Information


INDEX

www.cshlpress.org

SIGNAL TRANSDUCTION

Edited by Lewis Cantley, *Harvard Medical School*, Tony Hunter, *The Salk Institute*, Richard Sever, *Cold Spring Harbor Laboratory*, and Jeremy Thorner, *University of California, Berkeley*

Signal transduction pathways are molecular circuits that define how cells communicate with each other and respond to their environment. This new textbook for the first time provides a comprehensive view of the subject by covering both the basic mechanisms involved and the roles of signal transduction in fundamental biological processes. It starts by describing the basic players—signals, receptors, second messengers, and effectors—before comprehensively mapping the various different signaling pathways that operate in cells. It then goes on to provide detailed descriptions of how signal transduction functions in essential processes such as cell growth and division, metabolism, sensory perception, immunity, and reproduction.

2014, 464 pp., illus., index

Hardcover \$165 £110

ISBN 978-0-879699-01-7

Contents (preliminary)

Preface

Foreword

Edmond Fischer

I. GENERAL PRINCIPLES AND MECHANISMS

1. Signals and Receptors

Carl Henrik-Heldin, Benson Lu, Ron Evans, and Silvio Gutkind

2. General Principles and Mechanisms of Protein Regulation in Signal Transduction

Michael J. Lee and Michael B. Yaffe

3. Second messengers

Alexandra Newton and Susan Taylor

4. Signaling Networks: Computational Capabilities and Decision-making

Evren U. Azeloglu and Ravi Iyengar

II. PATHWAYS/ROAD MAPS

MAP Kinase Pathways

Deborah Morrison

PI3K-PKB/Akt Pathway Signaling

Brian A. Hemmings and David F. Restuccia

mTOR Signaling

Mathieu Laplante and David M. Sabatini

Calcium Signaling

Martin D. Bootman

The Cyclic AMP Pathway

Paolo Sassone-Corsi

The Wnt Signaling

Roel Nusse

Hedgehog Signaling

Philip W. Ingham

Notch Pathway

Raphael Kopan

Signaling by the TGF Superfamily

Jeffrey L. Wrana

JAK/STAT Pathway

Douglas Harrison

Toll-like Receptor Signaling

Kian-Huat Lim and Louis M. Staudt

Immunoreceptor Signaling

Lawrence E. Samelson

Signaling by Nuclear Receptors

Richard Sever and Christopher K. Glass

The Hippo Pathway

Kieran F. Harvey and Iwar K. Hariharan

III. SIGNALING PROCESSES

5. Signaling to the G1 Cell Cycle

Robert J. Duronio and Yue Xiong

6. Signaling Pathways that Regulate Cell Division

Nicholas Rhind and Paul Russell

7. Cell Growth and Metabolism

Patrick S. Ward and Craig B. Thompson

8. Signal Transduction and the Regulation of Cell Migration

Peter Devreotes and Rick Horwitz

9. Signaling Pathways in Cell Polarity

Luke M. McCaffrey and Ian G. Macara

10. Signaling Mechanisms Controlling Cell

Fate and Embryonic Patterning

Norbert Perrimon, Chrysoula Pitsouli, and Ben-Zion Shilo

11. Signaling by Sensory Receptors

David Julius and Jeremy Nathans

12. Synaptic Signaling in Learning and Memory

Mary B. Kennedy

13. Signaling in Muscle Contraction

Ivana Y. Kuo and Barbara E. Ehrlich

14. Organismal Carbohydrate and Lipid Homeostasis

D. Graham Hardie

15. Signaling in Innate Immunity and Inflammation

Kim Newton and Vishva Dixit

16. Signaling in Lymphocyte Activation

Doreen Cantrell

17. Vertebrate Reproduction

Sally Kornbluth and Rafael Fissore

18. Stress Responses

Gökhan Hotamisligil and Roger J. Davis

19. Death Signaling

Douglas R. Green and Fabien Llambi

20. Subversion of Cell Signaling by Pathogens

Kim Orth and Neal Alto

21. Signaling in Cancer

Richard Sever and Joan S. Brugge

22. Outlook

Jeremy Thorner, Lewis Cantley, Tony Hunter, and Richard Sever

Index

www.cshlpress.org