

MiSeq.TM

Better inside. Outside. Upside.

Inside you'll find a fully integrated sequencing solution delivering >85% Q30 bases and run times as fast as 8 hours from sample to data.

Outside you'll find "push button" sequencing, with a streamlined user experience, individually tracked load-and-go reagents, intuitive software interface, and minimal hands-on time.

The upside is what you can do with it. Designed around you, MiSeq offers intuitive workflow. The broadest application base. Built-in scalability. The best in next-gen sequencing just got better.

Bring more upside to your next sequencing study. Go to

www.illumina.com/MiSeq

illumina[®]

GRNAT

TWO GENOMIC LEADERS
ARE TEAMING
UP TO PUT THE
RNA IN GRANT

REGISTER TODAY FOR THREE RNA-SEQ GRANTS

- Biomarker discovery using whole transcriptome sequencing
- RNA-Seq analysis of FFPE cancer samples
- Developmental coding and non-coding RNA expression

To learn more and download an application, visit:

www.expressionanalysis.com/grant www.illumina.com/grant

Participation open to all individuals, institutions and organizations. Submission deadline is April 13, 2012.

PGM™ for genes. Proton™ for genomes.

Sequencing for all.

Powered by fast, simple, scalable semiconductor chips, the Ion PGM™ Sequencer introduced an entirely new approach to sequencing, making it dramatically faster and more accessible.

The new Ion Proton™ Sequencer will go even further. With chip densities up to 1,000-fold greater than the Ion PGM™ Sequencer, the Ion Proton™ Sequencer will put whole-genome sequencing within reach of every lab.

Get fast, affordable benchtop sequencing at
lifetechnologies.com/ionsequencing

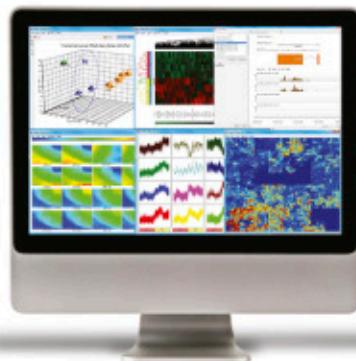
For research use only. Not intended for any animal or human therapeutic or diagnostic use. The content provided herein may relate to products that have not been officially released and is subject to change without notice. ©2012 Life Technologies Corporation. All rights reserved. The trademarks mentioned herein are the property of Life Technologies Corporation or their respective owners. C024559 0112


Directional RNA-Seq Libraries in 4 Hours.

From just 500 pg RNA.

Get RNA-Seq libraries on the sequencer the same day, with the new ScriptSeq™ v2 Kits. Start with just 500 pg of rRNA-depleted or poly(A)-enriched RNA. No cDNA fragmentation, adaptor ligation, or gel size-selection.

Go ahead. Make *your* day.


www.epicentre.com/scriptseqv2

The Most Comprehensive Start-to-Finish NGS and Microarray Analysis Solution Available

Partek®
Flow

Partek®
Genomics Suite

Partek®
Pathway

 Partek®
turning data into *discovery*®

www.partek.com

RNA A LABORATORY MANUAL

By Donald C. Rio, *University of California, Berkeley*; Manuel Ares, Jr., *University of California, Santa Cruz*; Gregory J. Hannon, *Cold Spring Harbor Laboratory*; and Timothy W. Nilsen, *Case Western Reserve University School of Medicine*

RNA molecules participate in and regulate a vast array of cellular processes, and the scientific community is now entering a new era in which some aspect of RNA biology—as a tool, a therapeutic, a diagnostic, or part of a fundamental process—is becoming increasingly important. But initiating RNA research can be intimidating, and without a thorough understanding of the challenges and complexities inherent in handling this fragile nucleic acid, forays into the RNA world can be quite frustrating. *RNA: A Laboratory Manual* provides a broad range of up-to-date techniques so that any investigator can confidently handle RNA and carry out meaningful experiments, from the most basic to the most sophisticated. Originating in four of the field's most prominent laboratories and written with novices as well as more advanced researchers in mind, this manual provides the necessary background and strategies for approaching any RNA investigation in addition to detailed step-by-step protocols and extensive tips and troubleshooting information. *RNA: A Laboratory Manual* will enable any researcher to approach a wide variety of RNA-related problems with confidence and a high expectation of success.

Published in November 2010, 586 pp., illus., appendices, index

Hardcover \$240

Paperback \$165

ISBN 978-0-879698-90-4

ISBN 978-0-879698-91-1

CONTENTS

Preface

Acknowledgments

CHAPTER 1: THE FUNDAMENTALS

Introduction

Common Sense in Dealing with RNA

Purification Methods and When to Use Them

Recovering Purified RNA: Guidelines for Precipitation

Resuspending Pelleted RNA

Assessing the Quantity and Quality of Isolated RNA after Purification

Removing Ribosomal RNAs

Enrichment of mRNA Using Oligo(dT) Cellulose

Enriching for Species of RNA Other Than mRNAs

Miscellaneous (but Important) General Items

Summary

CHAPTER 2: PURIFICATION OF RNA FROM NATURAL SOURCES

Overview

Protocols

1. SDS Solubilization and Phenol Extraction

2. Purification of RNA Using TRIzol (TRI Reagent)

3. Ethanol Precipitation of RNA and the Use of Carriers

4. Guidelines for the Use of RNA

Purification Kits

5. Preparation of Cytoplasmic and Nuclear RNA from Tissue Culture Cells

6. Removal of Ribosomal Subunits (and rRNA) from Cytoplasmic Extracts before Solubilization with SDS and Deproteinization

7. Isolation of Total RNA from Yeast Cell Cultures

Method 1: Vegetative Cells

Method 2: Meiotic Cells

8. Bacterial RNA Isolation (*E. coli*)

9. Removing rRNA from Deproteinized, Phenol-extracted Total RNA

Method 1: Enzymatic Digestion of rRNA

Method 2: Selective Precipitation of Large RNAs with LiCl or PEG/NaCl

Method 3: Removal of rRNA by Hybrid Selection

10. Enrichment of Poly(A)⁺ mRNA Using Immobilized Oligo(dT)

11. Removal of DNA from RNA

12. Gel Electrophoresis

Method 1: Polyacrylamide Gel Electrophoresis

Method 2: Agarose Gel Electrophoresis (Nondenaturing)

13. Determining the Yield and Quality of Purified RNA

CHAPTER 3: DETECTION AND CHARACTERIZATION OF SPECIFIC RNAs

Overview

Probe Preparation

Northern Blotting

Nuclease Protection

Primer Extension

Other Methods

PCR-based Approaches

Specialized Methods for Detecting Small RNAs

Protocols

1. Labeling of Oligonucleotide Probes (DNA, LNA, RNA) by Polynucleotide Kinase and [γ -³²P]ATP

2. DNA Oligonucleotide Radiolabeling by Terminal Deoxynucleotidyl Transferase (TdT)

3. Asymmetric Polymerase Chain Reaction to Generate Single-stranded Probes

4. Random Hexamer ³²P Radiolabeling of DNA Fragments as Hybridization Probes

5. Nick Translation of Double-stranded DNA for the Preparation of ³²P-Labeled Hybridization Probes

6. Enzymatic Dephosphorylation of RNA Using Calf Intestine Alkaline Phosphatase or Shrimp Alkaline Phosphatase

7. Northern Blots: Denaturation and Electrophoresis of RNA with Formaldehyde

8. Northern Blots: Denaturation and Electrophoresis of RNA with Glyosol

9. Northern Blots: Capillary Transfer of RNA from Agarose Gels and Filter Hybridization Using Standard Stringency Hybridization Conditions

10. Northern Blots: Alternative Method for Processing Northern Blots after Capillary Transfer

11. Northern Blots for Small RNAs and MicroRNAs

12. RNase Protection Assay

13. Nuclease SI Protection Mapping

14. Primer Extension Analysis of RNA

15. Reverse Primer Extension

16. Poised Primer Extension

17. Detection of RNAs by 3'-end Labeling and RNase H Digestion

18. Reverse Transcription-Polymerase Chain Reaction

Method 1: Reverse Transcription (RT): cDNA Priming and Synthesis

Method 2: Polymerase Chain Reaction and Detection of Products

19. Basic Quantitative PCR Using Real-time Fluorescence Measurements

20. 5' Rapid Amplification of cDNA Ends

21. 3' Rapid Amplification of cDNA Ends

22. RACE on Uncapped or Nonpolyadenylated RNAs

23. RNA Sequencing by Primer Extension

24. Direct Chemical Sequencing of End-labeled RNA

25. Splatned Ligation Method to Detect Small RNAs

CHAPTER 4: SYNTHESIS,

PURIFICATION, LABELING, AND

SUBSTITUTION OF TRANSCRIPTS SYN-

THESIZED IN VITRO

Overview

In Vitro Transcription: The Basics

Yield of In Vitro-Transcribed RNAs

Labeling of In Vitro-Synthesized RNAs

Protocols

1. In Vitro Transcription of RNA: Synthesis, Labeling, and Substitution

2. High-yield Synthesis of RNA Using T7

RNA Polymerase and Plasmid DNA or Oligonucleotide Templates

3. Determining the Yield of RNA Synthesized In Vitro

4. Gel Purification of RNA

5. 3'-End Labeling of RNA with [γ -³²P]Cp and T4 RNA Ligase

6. 3'-End Labeling of RNA with Yeast

Poly(A) Polymerase and 3'-

Deoxyadenosine 5'-[α -³²P]Triphosphate

(Cordycepin 5'-[α -³²P]Triphosphate)

7. 5'-End Labeling of RNA with [γ -³²P]ATP and T4 Polynucleotide Kinase

8. Site-specific Labeling and Substitution of RNA

13. BASIC AFFINITY SELECTION METHODS

Method 1: Basic Selection with Beads

Method 2: Selection with a Biotinylated

Oligonucleotide

Method 3: Selection of a Ribonucleoprotein

Using a Complementary Biotinylated

Oligonucleotide

CHAPTER 6: ANALYSIS OF RNA-PROCESSING REACTIONS USING CELL-FREE SYSTEMS

Introduction

Guidelines for the Preparation of Active Cell-free Systems

Guidelines for Testing and Optimizing Extracts

Developing Cell-free Systems from Poorly Studied Organisms

Protocols

1. Preparation of Nuclear Extracts from HeLa Cells

2. Analysis of Pre-mRNA Splicing Using HeLa Cell Nuclear Extracts

3. Preparation of *Drosophila* Kc Cell Nuclear Extracts for In Vitro Splicing

4. In Vitro Splicing Reactions in *Drosophila* Kc Nuclear Extracts

5. Preparation and Analysis of Cell-free Splicing Extracts from *Saccharomyces cerevisiae*

6. Analysis of Splicing In Vitro Using Extracts of *Saccharomyces cerevisiae*

7. Analysis of Splicing Complexes on Native Gels

CHAPTER 7: RNA INTERFERENCE

Introduction

RNAi: The Basics

The Design of RNAi Experiments: General

Considerations and Strategies

RNAi with Long dsRNA

Protocols

1. dsRNA-induced RNAi in *Drosophila* Cells by Soaking

2. dsRNA-induced RNAi in *Drosophila* Cells by Transfection

3. dsRNA-induced RNAi in *C. elegans* by Feeding with dsRNA-expressing *E. coli*

4. RNAi in *C. elegans* by Injection of dsRNA

5. RNAi in Cultured Mammalian Cells Using Synthetic siRNAs

6. Construction of Transgenic *Drosophila* Expressing shRNAs in the miR-1 Backbone

7. Creating an miR90-based shRNA Vector

8. Packaging shRNA Retroviruses and Host Cell Infection

9. Infection of Mammalian Cells with Retroviral shRNAs

10. Creating Transgenic shRNA Mice by Recombinase-mediated Cassette Exchange

CHAPTER 8: GENOMIC APPROACHES

Overview

Microarrays

Sequencing of RNAs by High-throughput Methods

Identifying RNAs Associated with Specific Proteins

Analysis of Genomic Data

Protocols

1. Preparation of Fluorescent-dye-labeled cDNA from RNA for Microarray Hybridization

2. Microarray Slide Hybridization

3. Scanning Microarray Slides

4. Tips on Hybridizing, Washing, and Scanning Affymetrix Microarrays

5. Fragmentation of Whole-transcriptome RNA Using *E. coli* RNase III

6. Preparation of Small RNA Libraries for High-throughput Sequencing

7. Large-scale Immunopurification of RNP Complexes from *Drosophila* Nucleoplasmic Extracts for Tiling Microarrays (RNA Immunoprecipitation Microarray; RIP-Chip)

8. CLIP (Cross-linking and Immunoprecipitation) Identification of RNAs Bound by a Specific Protein

9. Preparation of mRNA-Seq Libraries from Poly(A)⁺ mRNA for Illumina

Transcriptome Highthroughput Sequencing

10. Methods for Processing Microarray Data

11. Methods for Processing High-throughput Sequencing Data

APPENDICES

Common Recipes

Quick Reference for Enzymes Commonly Used in RNA Research

Protocols

1. RNA-friendly Plasmid Preparation

2. Preparing Cellular DNA from Nuclei or Whole Cells

3. Expression and Purification of Active Recombinant T7 RNA Polymerase from *E. coli*

4. Preparing Size Markers for Gel Electrophoresis

5. Tropo

6. Cell Fractionation

7. hnRNP-Enriched Nucleoplasmic Extracts from *Drosophila* or Mammalian Tissue Culture Cells

8. Measuring the Length of Poly(A) Tails

Method 1: Low-resolution Measurement of Poly(A) Tails Using Northern Blotting

Method 2: High-resolution Measurement of Poly(A) Tails Using Northern Blotting

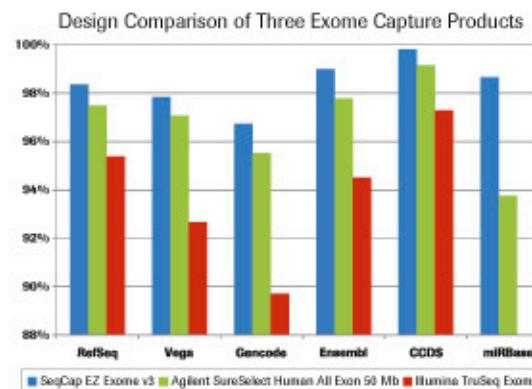
Method 3: PCR-based and Ligation-mediated Approaches for Measuring Poly(A) Tail Length

Cautions

Index

www.cshlpress.com

NEW
64Mb
capture


Discover More, Sequence Less

SeqCap EZ Exome Library v3.0

Discover the power of 2.1 million empirically rebalanced DNA probes for highly optimized performance and uniform coverage across the exome. Sequence more exomes per lane while simultaneously targeting the most inclusive coding region capture design available.

- **Achieve the most comprehensive coverage of coding regions**
- **Experience the highest target enrichment efficiency***
- **Maximize variant discovery while minimizing sequencing costs**

* Clark M, et al. *Nat. Biotech.* 2011; doi:10.1038/nbt.1975

Comparison of SeqCap EZ Exome Library v3.0 design with two other products. For the databases shown, SeqCap EZ Exome v3.0 targets more exons and miRNAs compared to both Agilent and Illumina products

Discover more

www.nimblegen.com/exomev3

For life science research only.
Not for use in diagnostic procedures.

NIMBLEGEN and SEQCAP are trademarks of Roche.
All other product names and trademarks are the property of their respective owners.
© 2011-2012 Roche NimbleGen, Inc. All rights reserved.

Roche NimbleGen, Inc.
Madison, WI USA

CAREER TRACKS

Dedicated entirely to Employment, Conferences, Meetings, Fellowships, and Grants

Faculty Positions in Human Statistical Genetics

Established in August, 2006, the mission of the Battelle Center for Mathematical Medicine (BCMM) is to assemble and support a broad range of mathematical, statistical, and computational experts for the purposes of conducting cutting-edge quantitative research, with the ultimate goal of informing and improving clinical care in pediatrics. Located at The Research Institute at Nationwide Children's Hospital, an affiliate of Nationwide Children's Hospital and the Department of Pediatrics of The Ohio State University College of Medicine, the BCMM is seeking to fill three open rank tenure track positions. We are looking for candidates who can extend the quantitative and computational technologies of the BCMM in creative ways; who are interested in both basic quantitative research and collaborative biomedical research; and who seek a highly collaborative, research-focused environment. Appointments at the Assistant, Associate, and Full Professor level are anticipated. Candidates are expected to have a Ph.D. or equivalent degree in a statistical, mathematical or computational field, or an M.D. or Ph.D. in a biomedical field with a quantitative or computational research focus. Generous start-up packages are available.

Nationwide Children's Hospital is the fourth largest free standing children's hospital in the United States. The Research Institute is housed in a modern 350,000 square foot, dedicated research facility with outstanding shared facilities and core laboratories. Federal grant awards in 2011 exceeded 40 million dollars and total external research awards exceeded \$52 million. For more information, please visit our website at www.mathmed.org.

Send correspondence, including curriculum vitae and contact information for three references, to Karen Schmidt, Search Coordinator, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Room JW3914, Columbus, OH 43205, FAX (614) 355-2728, or to Karen.Schmidt@Nationwidechildrens.org.

To build a diverse workforce Ohio State encourages applications from individuals with disabilities, minorities, veterans, and women. EEO/A employer

Cold Spring Harbor Perspectives in Biology The Authoritative View

www.cshperspectives.org

A New Type of Review Journal

Cold Spring Harbor Laboratory Press announces the launch of a new monthly online publication, *Cold Spring Harbor Perspectives in Biology*. Spanning the complete spectrum of the molecular life sciences, the journal offers article collections that comprehensively survey topics in molecular, cell, and developmental biology, genetics, neuroscience, immunology, cancer biology, and molecular pathology. Written by leading researchers and commissioned by an eminent board of editors, subject collections grow with every issue of the journal. *Cold Spring Harbor Perspectives in Biology* is thus unmatched in its depth of coverage and represents an essential source for informed surveys and critical discussion of advances in emerging areas of biology.

Scope: Molecular Biology, Cell Biology, Developmental Biology, Genetics, Neurobiology
Monthly, online

ISSN: 1943-0264

Subject Coverage	The Extracellular Matrix	Immune Tolerance	Muscle Cell Biology	Receptor Tyrosine Kinases
Angiogenesis	The Endoplasmic Reticulum	Lipid Cell Biology	Neuronal Guidance	Recombination Mechanisms
Antigen Processing	The Evolution of Gene Networks	Lymphocyte Cell Biology	The NF- κ B Family	Regeneration
Apoptosis	Generation and Interpretation of Morphogen Gradients	Mammary Gland Biology	Nuclear Hormone Receptors	RNA Worlds
Auxin Signaling	Germ Cells	Mechanotransduction	The Nucleus	Sex Determination
Calcium Signaling	The Golgi Apparatus	Membrane Fusion and Exocytosis	The Origin of Life	Symmetry Breaking in Biology
Cell-Cell Junctions	Growth Factor Receptors	Mitochondria	The p53 Family	Synapses
Cilia and Flagella	Immune Cell Signaling	Mitosis	Prions	Transcriptional Regulation
The Cytoskeleton		Molecular Motors	Prokaryote Cell Biology	Wnt Signaling
DNA Damage and Repair			Protein Homeostasis	The Y Chromosome

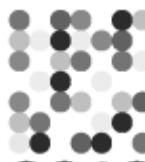
To order or request additional information, please visit our website or:

Call: 1-800-843-4388 (Continental US and Canada)

516-422-4100 (All other locations)

FAX: 516-422-4097

E-mail: cshpress@cshl.edu


Write: Cold Spring Harbor Laboratory Press, 500 Sunnyside Blvd., Woodbury, NY 11797-2924

4th International Conference on Quantitative Genetics

Edinburgh – 17-22 June 2012, Edinburgh International Conference Centre

ICQG2012

Supported by
the
genetics society

We Are Delighted To Advise The Following Confirmed Speakers

Eric Lander (*Genetics Society Mendel Medal Lecture*)

Örjan Carlborg (*Genetics Society Balfour Lecturer*)

Goncalo Abecasis

Piter Bijma

Ed Buckler

Mark Blows

Gustavo de los Campos

Richard Durbin

Jarrod Hadfield

Ben Hayes

Matt Hurles

Frank Johannes

Trudy Mackay

Mark McCarthy

Magnus Nordborg

Sergey Nuzhdin

Patrick Phillips

Chris-Carolin Schoen

Nik Schork

Pak Sham

John Storey

Peter Visscher

Alastair Wilson

Additional speakers will be selected from those offering abstracts for oral or poster presentation.

Local Organising Committee

Bill Hill (Chair)

Lutz Bünger

Chris Haley

Mike Kearsey

DJ de Koning

Loeske Kruuk

Josephine Pemberton

Alan Wright

Conference Themes:

1. The Genetic Architecture of Complex Traits
2. Evolutionary Quantitative Genetics
3. Variation in the Genome
4. Advances from New Numerical Methods
5. Opportunities from Technological Advances
6. Bridging the Genotype-Phenotype Gap
7. Interactions among Individuals and with the Environment
8. Genomic Information in Prediction
9. Emerging Areas

Key Dates

Friday 6 April 2012

Abstract Submission Deadline
for Poster abstracts only

Sunday 10 June 2012

Pre-conference
registration closes

Register now at: www.icqg4.org.uk/register.html

