

Research

Rare versus common variants in pharmacogenetics: <i>SLCO1B1</i> variation and methotrexate disposition	1
Laura B. Ramsey, Gitte H. Bruun, Wenjian Yang, Lisa R. Treviño, Selina Vattathil, Paul Scheet, Cheng Cheng, Gary L. Rosner, Kathleen M. Giacomini, Yiping Fan, Alex Sparreboom, Torben S. Mikkelsen, Thomas J. Corydon, Ching-Hon Pui, William E. Evans, and Mary V. Relling	
Cell-type specific and combinatorial usage of diverse transcription factors revealed by genome-wide binding studies in multiple human cells	9 ^{OA}
Bum-Kyu Lee, Akshay A. Bhinge, Anna Battenhouse, Ryan M. McDaniell, Zheng Liu, Lingyun Song, Yunyun Ni, Ewan Birney, Jason D. Lieb, Terrence S. Furey, Gregory E. Crawford, and Vishwanath R. Iyer	
Aberrant firing of replication origins potentially explains intragenic nonrecurrent rearrangements within genes, including the human <i>DMD</i> gene	25
Arunkanth Ankala, Jordan N. Kohn, Anisha Hegde, Arjun Meka, Chin Lip Hon Ephrem, Syed H. Askree, Shruti Bhide, and Madhuri R. Hegde	
Changes in exon–intron structure during vertebrate evolution affect the splicing pattern of exons	35
Sahar Gelfman, David Burstein, Osnat Penn, Anna Savchenko, Maayan Amit, Schraga Schwartz, Tal Pupko, and Gil Ast	
Death of <i>PRDM9</i> coincides with stabilization of the recombination landscape in the dog genome	51 ^{OA}
Erik Axelsson, Matthew T. Webster, Abhirami Ratnakumar, The LUPA Consortium, Chris P. Ponting, and Kerstin Lindblad-Toh	
Developmental control of gene copy number by repression of replication initiation and fork progression	64 ^{OA}
Noa Sher, George W. Bell, Sharon Li, Jared Nordman, Thomas Eng, Matthew L. Eaton, David M. MacAlpine, and Terry L. Orr-Weaver	
A novel candidate <i>cis</i> -regulatory motif pair in the promoters of germline and oogenesis genes in <i>C. elegans</i>	76
Chaim Linhart, Yonit Halperin, Amir Darom, Shahar Kidron, Limor Broday, and Ron Shamir	
A genomic model of condition-specific nucleosome behavior explains transcriptional activity in yeast	84 ^{OA}
Judith B. Zaugg and Nicholas M. Luscombe	
Contrasting patterns of evolution following whole genome versus tandem duplication events in <i>Populus</i>	95
Eli Rodgers-Melnick, Shrinivasrao P. Mane, Palitha Dharmawardhana, Gancho T. Slavov, Oswald R. Crasta, Steven H. Strauss, Amy M. Brunner, and Stephen P. DiFazio	
Genomic basis of endosymbiont-conferred protection against an insect parasitoid	106
Allison K. Hansen, Christoph Vorburger, and Nancy A. Moran	

(continued)

Herwig Bachmann, Marjo J.C. Starrenburg, Douwe Molenaar, Michiel Kleerebezem,
and Johan E.T. van Hylckama Vlieg

Methods

Preparation of high-quality next-generation sequencing libraries from picogram quantities of target DNA

125^{OA}

Nicholas J. Parkinson, Siarhei Maslau, Ben Ferneyhough, Gang Zhang, Lorna Gregory, David Buck,
Jiannis Ragoussis, Chris P. Ponting, and Michael D. Fischer

Transposase mediated construction of RNA-seq libraries

134

Jason Gertz, Katherine E. Varley, Nicholas S. Davis, Bradley J. Baas, Igor Y. Goryshin,
Ramesh Vaidyanathan, Scott Kuersten, and Richard M. Myers

Accurate identification of A-to-I RNA editing in human by transcriptome sequencing

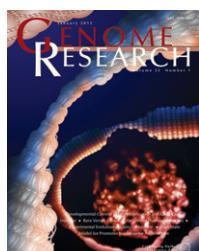
142

Jae Hoon Bahn, Jae-Hyung Lee, Gang Li, Christopher Greer, Guangdun Peng, and Xinshu Xiao

Resources

High-resolution mapping of open chromatin in the rice genome

151


Wenli Zhang, Yufeng Wu, James C. Schnable, Zixian Zeng, Michael Freeling,
Gregory E. Crawford, and Jiming Jiang

High-resolution experimental and computational profiling of tissue-specific known and novel miRNAs in *Arabidopsis*

163

Natalie W. Breakfield, David L. Corcoran, Jalean J. Petricka, Jeffrey Shen, Juthamas Sae-Seaw,
Ignacio Rubio-Somoza, Detlef Weigel, Uwe Ohler, and Philip N. Benfey

^{OA}Open Access paper.

Cover Polyploid or polytene tissues are common throughout development in plants and animals. Both have increased DNA copy number, but they differ in their arrangement of replicated chromatids, with sisters being aligned in polytene chromosomes. Polytene chromosomes in *Drosophila* can have greater than 1000 copies of each chromosome, but copy number is not necessarily uniform throughout the genome, as illustrated by the constricted regions of reduced copy number. In this issue, under-replicated regions in *Drosophila* salivary glands are shown to be repressed for transcription and ORC binding. Active inhibition of replication fork progression across the regions also contributes to reduced copy number. (Cover illustration by Tom DiCesare, <http://www.scipix.com>. [For details, see Sher et al., pp. 64–75.])