

Big
The Next Thing in Sequencing
is small.

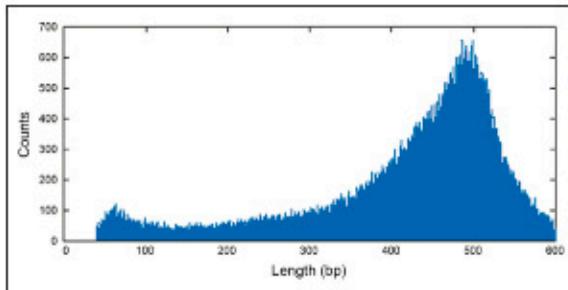


Figure 1: Example Read Length Distribution of 100,000 reads from *E. coli* K-12 (genome size approximately 4.5 Mb), from a single GS Junior System run.

Bring the power, performance, speed, and long reads of the GS FLX Titanium chemistry to your benchtop with the newest addition to the Roche genome sequencing portfolio –

The GS Junior Sequencing System.

- Make the most of your sequencing projects with our 400- to 500-base-pair read lengths (Figure 1).
- Benefit from established technology that has enabled hundreds of peer-reviewed publications.
- Rapidly process data using the system's comprehensive suite of dedicated analysis software.

A composite image featuring a 454 sequencer on the left, a computer monitor displaying sequencing software in the center, and a 3D visualization of DNA molecules and sequencing data on the right. The visualization shows a DNA helix with a small virus-like particle on a blue surface, and a bar chart with colored bars representing sequencing data.

www.454.com

For life science research only.
Not for use in diagnostic procedures.

454
SEQUENCING

Choose the 454 Sequencing solution that fits your application needs

System	Genome Sequencer FLX System	GS Junior Sequencing System
Throughput	400-600 million high-quality, filter-passed bases per run [†]	>35 million high-quality, filter-passed bases per run [†]
Run Time	10 hours sequencing time, 2 hours data processing [†]	10 hours sequencing time, 2 hours data processing [†]
Read Length	Modal length = 500 bases, Average length = 400 bases [†] <i>Coming later this year: read lengths of up to 1,000 bases</i>	Modal length = 500 bases, Average length = 400 bases [†]
Accuracy	Q20 read length at 400 bases (99% accuracy at 400 bases)	Q20 read length at 400 bases (99% accuracy at 400 bases)
Reads per Run	>1 million reads	100,000 reads (on average)
Software Included	GS <i>De Novo</i> Assembler, GS Reference Mapper, GS Amplicon Variant Analyzer	GS <i>De Novo</i> Assembler, GS Reference Mapper, GS Amplicon Variant Analyzer
Computing Requirements	Cluster recommended (Roche GS FLX Titanium Cluster available)	Linux-based OS on HP desktop computer, included
Sample Input Requirements	Purified gDNA, amplicons, cDNA, or RNA, depending on the application	Purified gDNA, amplicons, cDNA, or RNA, depending on the application
Physical Dimensions	Upper assembly: 74.3 cm W x 69.8 cm D x 36.1 cm H including monitor 82.5 cm H Permanently affixed lower assembly: 75.2 cm W x 90.8 cm D x 92.7 cm H Weight: 532 lb.	Benchtop sequencer: 40 cm W x 60 cm D x 40 cm H Weight: 55 lb.

[†] Typical results using GS FLX Titanium Series chemistry. Average read length and number of reads depend on specific sample and genome characteristics.

For additional information visit www.454.com
or contact your local Roche representative.

For life science research only.
Not for use in diagnostic procedures.

454, 454 SEQUENCING, GS JUNIOR, and GS FLX are trademarks of Roche.
© 2010 Roche Diagnostics. All rights reserved. 05/10

Roche Diagnostics Corporation
Roche Applied Science
Indianapolis, Indiana

Introducing **HiSeq™ 2000**

Redefining the trajectory
of sequencing.

What if you could:

- Sequence a normal and a cancer human genome at 30x coverage?
- Perform gene expression profiling on 200 samples?
- Sequence a genome on one flow cell and its epigenome and transcriptome on the other flow cell?

Each in a single run?

Now you can with HiSeq 2000. It's a new standard in output, user experience, and cost-effectiveness.

Sequence on a scale never before possible.

Learn more at www.illumina.com/HiSeq2000

illumina®

When you need to search for scientific equipment and supplies use the **NET!**
BioSupplyNet.com

Stop wasting time comparing prices . . .

Introducing the **BSN Rapid Request** feature. Contact multiple companies with just one email and watch the price quotes come directly to you.

SAVE TIME . . .
 SAVE MONEY with
www.BioSupplyNet.com

A division of Cold Spring Harbor Laboratory Press

Can you see how they'll be different 30 years from now?

AB applied
biosystems[®]
part of *life* technologies[™]

SOLiD™ 4
SYSTEM SEQUENCING

Can you reduce the cost and time of validation?

Can higher accuracy reduce the coverage
required to detect SNPs?

Can you see the mutation earlier?

Can true paired-end protocols reduce the noise?

Can you analyze heterogeneous samples?

Introducing the new, more accurate, higher throughput SOLiD™ 4 System.

Next-generation sequencing just leaped to the next level in accuracy. The SOLiD™ 4 System leverages advanced informatics and optimized reagents to enable scientist to obtain the highest accuracy of any NGS system. With throughputs of 100 GB per run and workflow automation, the SOLiD™ 4 System accelerates your large-scale genomic analysis to an

unprecedented pace. Plus, new paired-end library options enable detection of novel splice variation and fusion transcripts with less input DNA. Using the SOLiD™ 4 System, your laboratory will have the ability to detect more variation and spend less time and money doing it. Take a look at the new SOLiD™ 4 System. See what's never been seen before.

For more information, visit us at www.appliedbiosystems.com/solid4

life
technologies[™]

For Research Use Only. Not for use in diagnostic procedures. © 2010 Life Technologies Corporation. All rights reserved. Trademarks of Life Technologies Corporation and its affiliated companies. All other trademarks are the sole property of their respective owners. Printed in the USA. 02/2010 Publication C011499 0210

Sequencer-Ready Libraries in Less than 2 Hours...

...from 50 ng of DNA!

EPICENTRE's revolutionary Nextera™ technology uses *in vitro* transposition to prepare sequencer-ready libraries from genomic DNA for multiple sequencing platforms. The technology simultaneously fragments and tags DNA, in a single-tube reaction.

- Use nanogram amounts of starting DNA.
- Prepare sequencer-ready libraries in less than 2 hours.
- Incorporate platform-specific tags and optional barcodes.
- Validated on Roche 454™ GS FLX Titanium™ and Illumina Solexa® GAI, GAIIL.

Summary data from Nextera libraries sequenced using GS FLX Titanium chemistry.

Sample	Total Reads	% Total Nucleotides Identified	Reference Sequence Length	X Coverage	% Mapped Reads
<i>E. coli</i>	472,007	99.95	4.64 Mb	33.21	88.74
Plasmid 1	10,657	99.93	19.7 Kb	151.38	93.74
Plasmid 2	6,291	99.89	6.3 Kb	284.17	86.73
Soy (W82)	572,162	99.90	973 Mb	0.16	87.64

Visit our blog at: epicentral.blogspot.com/search/label/nextera

For more information visit: www.EpiBio.com/nextera

Nextera is a trademark of EPICENTRE Biotechnologies. 454 and GS FLX Titanium are trademarks of Roche. Solexa is a registered trademark of Illumina, Inc.

www.EpiBio.com 800-284-8474
Tech Blog: epicentral.blogspot.com

What if?

You had the right tools to optimize
your next gen sequencing.

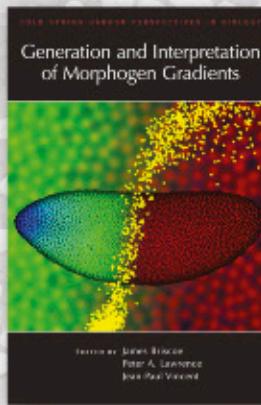
The enormous scope of next generation sequencing brings with it a variety of new challenges. In response, Agilent has developed a robust portfolio of products, each designed to improve the efficiency of your work, and to optimize your next gen sequencing.

- Ensure optimal sample and library quality with the Agilent 2100 Bioanalyzer
- Perform real-time library amplification and quantification with the Stratagene QPCR platform
- Increase yields and improve reproducibility with the Agilent Bravo Liquid Handling Platform
- Target genetic variation efficiently with the Agilent SureSelect Target Enrichment System

What if you could finally wield the full potential of next gen sequencing?

Find out how, at www.opengenomics.com/nextgen

WE MAKE IT. You make it happen.


© Agilent Technologies, Inc. 2010

Agilent Technologies

Generation and Interpretation of Morphogen Gradients

A COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY COLLECTION

Edited by James Briscoe, *MRC National Institute for Medical Research*, Peter A. Lawrence, *University of Cambridge*, and *MRC Laboratory of Molecular Biology*, and Jean-Paul Vincent, *MRC National Institute for Medical Research*

Signaling by diffusible morphogens, such as Hedgehog, Wingless, TGF- β , and various growth factors, is essential during embryogenesis. The establishment of concentration gradients of these morphogens is vital for developmental patterning, ensuring that distinct differentiated cell types appear in the right place and at the right time in forming tissues.

Written and edited by experts in the field, this volume explores how morphogen gradients are generated and interpreted during development. The contributors examine the regulation of morphogen synthesis, trafficking, and diffusion, as well as the complex webs of signaling mechanisms and transcriptional responses in recipient cells — whose fates are dictated by these morphogens.

Including discussion of the roles of morphogen gradients in various tissues in organisms from yeast to humans, the volume is a vital reference for developmental biologists and cell biologists wishing to know how cell fate is determined during embryogenesis.

2010, 308 pp., illus., index
Hardcover \$135

ISBN 978-087969881-2

Contents

Preface

Morphogen Gradient Formation
Ortrud Wartlick, Anna Kicheva, and Marcos González-Gaitán

Models for the Generation and Interpretation of Gradients
Hans Meinhardt

Robust Generation and Decoding of Morphogen Gradients
Naama Barkai and Ben-Zion Shilo

The Measure of Success: Constraints, Objectives, and Tradeoffs in Morphogen-mediated Patterning
Arthur D. Lander, Wing-Cheong Lo, Qing Nie, and Frederic Y.M. Wan

Shaping Morphogen Gradients by Proteoglycans
Dong Yan and Xinhua Lin

Forming and Interpreting Gradients in the Early *Xenopus* Embryo
James C. Smith

Systems Biology of the Self-regulating Morphogenetic Gradient of the *Xenopus* Gastrula
Jean-Louis Ploubinec and E.M. De Robertis

Nodal Morphogens
Alexander F. Schier

Gradients in Planarian Regeneration and Homeostasis
Teresa Adell, Francesc Cebrià, and Emili Saló

Axial Patterning in Hydra
Hans R. Bode

Regulation of Organ Growth by Morphogen Gradients
Gerald Schwank and Konrad Basler

Signaling Gradients during Paraxial Mesoderm Development
Alexander Aulehla and Olivier Pourquié

Vertebrate Limb Development: Moving from Classical Morphogen Gradients to an Integrated 4-Dimensional Patterning System
Jean-Denis Bénazet and Rolf Zeller

Establishing and Interpreting Graded Sonic Hedgehog Signaling during Vertebrate Neural Tube Patterning: The Role of Negative Feedback
Vanessa Ribes and James Briscoe

Gradients in the Brain: The Control of the Development of Form and Function in the Cerebral Cortex
Stephen N. Sansom and Frederick J. Livesey

Graded Dorsal and Differential Gene Regulation in the *Drosophila* Embryo
Gregory T. Reeves and Angelike Stathopoulos

Gradients and the Specification of Planar Polarity in the Insect Cuticle
David Strutt

Chemical Gradients and Chemotropism in Yeast
Robert A. Arkowitz

Forming Patterns in Development without Morphogen Gradients: Scattered Differentiation and Sorting Out
Robert R. Kay and Christopher R.L. Thompson

Index

www.cshlpress.com

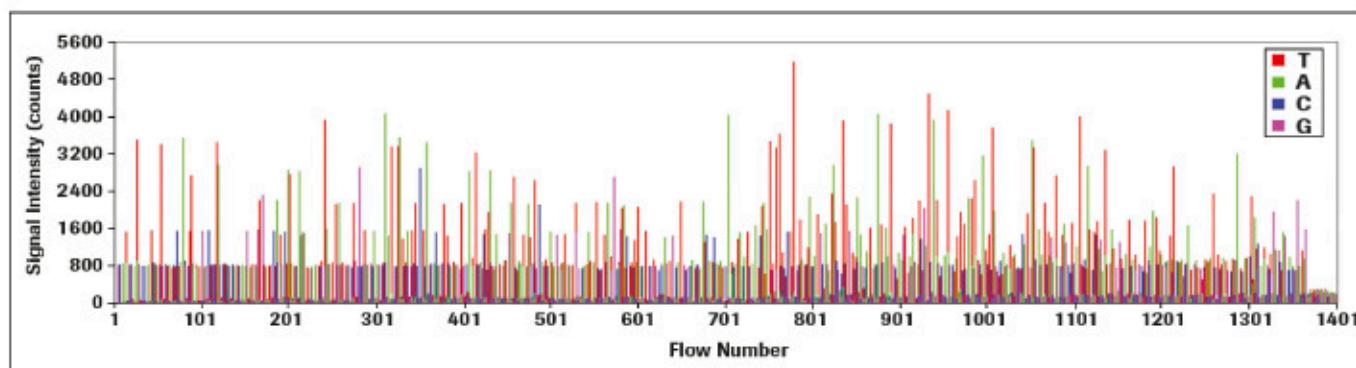
To order or request additional information, please visit our website or:

Call: 1-800-843-4388 (Continental US and Canada) 516-422-4100 (All other locations)

Fax: 516-422-4097

E-mail: cshpress@cshl.edu

Write: Cold Spring Harbor Laboratory Press, 500 Sunnyside Blvd., Woodbury, NY 11797-2924



www.454.com

Genome Sequencer FLX System

Less
~~Some assembly required~~

DNA Sequencing Flowgram: Each bar within the flowgram represents a discrete nucleotide (A, T, C, or G) and the height of the bar corresponds to the number of nucleotides detected. The flowgram above represents a 1008-base-pair sequencing read from *E. coli* K-12.

Make assembly easier by using the **Genome Sequencer FLX System** – featuring the longest read length available in next-generation sequencing (up to 1,000 bp) and a powerful suite of analysis tools.

- **GS De Novo Assembler**
Generate a full cased directory structure.
- **GS Reference Mapper**
Map 1 Gb of sequencing data in 1 hour.
- **GS Amplicon Variant Analyzer**
Create reports and graph results of variations.

For life science research only.
Not for use in diagnostic procedures.

Learn more at www.454.com

454
SEQUENCING

454, 454 LIFE SCIENCES, 454 SEQUENCING, and GS FLX are trademarks of Roche. Other brands or product names are trademarks of their respective holders. © 2010 Roche Diagnostics. All rights reserved.

Roche Diagnostics Corporation
Roche Applied Science
Indianapolis, Indiana

KEYSTONE SYMPOSIA

2011 GENOMICS CONFERENCES

Submit an abstract, apply for a scholarship and register for Keystone Symposia's upcoming conferences in the beautiful Rockies:

Functional Consequences of Structural Variation in the Genome

January 23–28, 2011

Sheraton Steamboat Resort • Steamboat Springs, Colorado • USA

Scientific Organizers: Evan E. Eichler and Matthew Hurles

Abstract & Scholarship Deadline – Sep 14, 2010

Late-Breaking Abstract Deadline – Oct 11, 2010

Early Registration Deadline – Nov 8, 2010

www.keystonesymposia.org/11A1

Genomic Instability and DNA Repair

January 30–February 4, 2011

Keystone Resort • Keystone, Colorado • USA

Scientific Organizers: Junjie Chen, Karlene A. Cimprich and Michael B. Yaffe

Abstract & Scholarship Deadline – Sep 30, 2010

Late-Breaking Abstract Deadline – Nov 2, 2010

Early Registration Deadline – Nov 30, 2010

www.keystonesymposia.org/11B4

Changing Landscape of the Cancer Genome

June 2011

Scientific Organizers: Lynda Chin, Christoph Lengauer and Michael Stratton

Deadlines, exact dates and venue to be announced soon. Please visit

keystonesymposia.org/2011meetings for updates on this meeting and others.

KEYSTONE SYMPOSIA™
on Molecular and Cellular Biology
Accelerating Life Science Discovery

www.keystonesymposia.org • 1.800.253.0685 • 1.970.262.1230

CAREER TRACKS

Dedicated entirely to Employment, Conferences, Meetings, Fellowships, and Grants

University of Maryland, School of Medicine Postdoctoral Fellow

The newly created Institute for Genome Sciences (IGS) at the University of Maryland, School of Medicine is in a period of rapid expansion. The Institute is led by Claire M. Fraser-Liggett, Ph.D., one of the world's preeminent genome scientists, and encompasses an inter-disciplinary, multi-departmental team of collaborative investigators with a broad research program related to the genomics of infectious disease agents, human microbial metagenomics, functional genomics and bioinformatics. The impact of the members of IGS on the field of genomics has been substantial, with more than 500 publications during the past 15 years which have been cited more than 30,000 times.

The Institute is currently seeking a postdoctoral fellow with experience in bioinformatics to study human genetic variation. Our main goal is to study "alternative" (non-SNP) forms of genetic variation such as small insertions and deletions (INDELs) and transposon insertions in diverse humans (Mills et al. 2006, *Genome Res.* 16, 1182-1190; Mills et al. 2007, *Trends Genet.* 23, 183-91, 2007; Bennett et al. 2008, *Genome Res.* 18, 1875-83). A future goal is to develop innovative approaches to study the impact of INDELs and transposon insertions on human traits and diseases, including cancers. The candidate should have advanced informatics skills (ideally, a working knowledge of Java, PERL, Python, MySQL, and web development) and a Ph.D. in a relevant field (Genetics, Biochemistry or Bioinformatics). Experience with data modeling is desirable. Molecular Biology or Biochemistry wet lab skills, a plus. The candidate must be eligible to apply for an NIH postdoctoral fellowship.

Please send your C.V. electronically to:
Scott Devine, Ph.D.
Institute for Genome Sciences
University of Maryland, School of Medicine
Baltimore, MD 21201
sdevine@som.umaryland.edu

AA/EOE/ADA

Postdoctoral Positions at Cold Spring Harbor Laboratory

Cold Spring Harbor Laboratory is a world-renowned research and educational institution recognized internationally for its excellence in ground-breaking research and educational activities. We invite highly motivated individuals to visit our website at www.cshl.edu to review and apply for current postdoctoral opportunities in the following areas.

Cancer Research: Members of the CSHL Cancer Center are involved in studies focused on cancer genomics, signal transduction, mouse models, gene expression, cell proliferation and tumor biology.

Neuroscience: The primary focus of the CSHL Neuroscience program is neural circuits and how disruption of these circuits leads to disorders including autism and schizophrenia. Research is being carried out at the genetic, molecular, developmental, systems, behavioral and computational levels.

Plant Biology: The CSHL Plant Biology program focuses primarily on development, stem cells, morphogenesis, plant genomics and epigenetics.

Genomics and Bioinformatics: The CSHL Genomics program uses state-of-the-art technologies including high-throughput sequencing, copy number variation analysis and transcriptome analysis. Efforts are ongoing to understand genomic variation associated with several human diseases as well as elucidating and characterizing new functional outputs of the genome.

Quantitative Biology: The CSHL Center for Quantitative Biology is comprised of scientists in the fields of physics, computer science, engineering, statistics and applied mathematics dedicated to applying quantitative methods to studies in human genetics, genomic, neurobiology, and signal and image processing.

Cold Spring Harbor Laboratory
Human Resources
One Bungtown Road
Cold Spring Harbor, NY 11724
Website: www.cshl.edu

Cold Spring Harbor Laboratory is an Equal Opportunity Employer.

ADVANCED COURSES 2010

Mathematical Models for Infectious Disease Dynamics

15–26 February

Virus Discovery in the Clinical Setting

7–12 March

Technologies and Applications for Genome Analysis

18–27 April

Molecular Basis of Bacterial Infection: Basic & Applied Research Approaches

9–15 May

Functional Genomics and Systems Biology

16–25 June

Molecular Neurology and Neuropathology

19–26 June

Practical Aspects of Small Molecule Drug Discovery

4–9 July

Next Generation Sequencing

18–24 July

Human Genome Analysis: Genetic Analysis of Multifactorial Diseases

21–27 July

Design and Analysis of Genetic-based Association Studies

23–27 August

WORKSHOPS

Working with the Human Genome Sequence

10–12 May

Proteomics Bioinformatics

12–18 December

OVERSEAS COURSES

Working with Pathogen Genomes

Ho Chi Minh City, Vietnam

28 February–6 March

Genomic Epidemiology of Malaria

Bangkok, Thailand

29 August–4 September

SCIENTIFIC CONFERENCES 2010

Computational Cell Biology

10–14 February

Therapeutic Applications of Computational Biology and Chemistry: TACBAC

1–3 March

Perspectives in Clinical Proteomics

Training workshop 17–18 March

Conference 18–19 March

Genomic Disorders

24–27 March

The Evolutionary Biology of *Caenorhabditis* and Other Nematodes

6–9 June

Genomics of Malaria Epidemiology

9–13 June

EBI-Wellcome Trust Bioinformatics Summer School

14–18 June

Sub Nuclear Structures and Disease

27–30 July

Systems Biology: Networks

11–15 August

Wellcome Trust School of Human Genomics

22–26 August

16th Meeting of the European Society for Pigment Cell Research

4–7 September

Signalling to Chromatin

8–11 September

Infectious Disease Genomics & Global Health

12–15 September

Genome Informatics

15–19 September

RNA2010 - Structure, function and evolution of RNA polymerases

22–25 September

Bridging the Gap on Biomedical Genetics

27–29 October

Courses and conferences are held at the Wellcome Trust Genome Campus, Hinxton, Cambridge – home to one of the world's largest concentrations of expertise in genomics and bioinformatics.

For full details, please visit:

www.wellcome.ac.uk/hinxton

Genetics Society of America

The Future of Genetics is Here

2
0
1
0

GENETICS 2010: Model Organisms to Human Biology

June 12 – 15 • Boston, Massachusetts

51st Annual Drosophila Research Conference

April 7 – 11 • Washington, D.C.

Yeast Genetics and Molecular Biology Meeting

July 27 – August 1 • Vancouver, BC, Canada

GENETICS SOCIETY OF AMERICA CONFERENCES

and Coming in 2011...

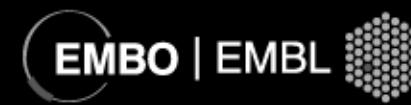
26th Fungal Genetics Conference

March 15 – 20 • Pacific Grove, California

52nd Annual Drosophila Research Conference

March 30 – April 2 • San Diego, California

18th International *C. elegans* Meeting


June • Los Angeles, California

MouseGenetics 2011

June 22 – 26 • Washington, D.C.

**discover.
understand.
inform.**

for additional information: genetics-gsa.org/conferences

EMBO | EMBL Symposium

Human Variation: Cause and Consequence

20–23 JUNE 2010
HEIDELBERG | GERMANY
Advanced Training Centre

SESSION | Mechanisms of Mutation

CHAIR | Andrew Wilkie

Weatherall Institute of
Molecular Medicine, UK

Peter Arndt
Max Planck Institute for
Molecular Genetics, DE

Laurent Duret
University of Lyon, FR

Evan Eichler
University of Washington, US

Adam Eyre-Walker
University of Sussex, UK

Kateryna Makova
Penn State University, US

Gil McVean
University of Oxford, UK

SESSION | Disease Genetics

CHAIR | Leena Peltonen
Wellcome Trust Sanger Institute, UK

Mark Daly
Harvard Medical School, US

Helen Hobbs
Howard Hughes Medical Institute
at UT Southwestern, US

Rick Lifton
Yale School of Medicine, US

Kerstin Lindblad-Toh
Uppsala University, SE
Broad Institute of MIT and Harvard, US

Steven McCarroll
Harvard Medical School, US

Mark McCarthy
Oxford Centre for Diabetes,
Endocrinology & Metabolism, UK

Mike Stratton
Wellcome Trust Sanger Institute, UK

John Trowsdale
Cambridge Institute for Medical Research, UK

KEYNOTE SPEAKERS

Svante Pääbo

Max Planck Institute for
Evolutionary Anthropology, DE

Kári Stefánsson
deCODE genetics, IS

SESSION | Functional Variation

CHAIR | Ewan Birney
European Bioinformatics Institute, UK

Stephan Beck
University College London, UK

Søren Brunak
University of Denmark, DK

Vivian Cheung
University of Pennsylvania, US

Manolis Dermitzakis
University of Geneva Medical School, CH

Jorge Ferrer
Institut d'Investigacions Biomèdiques
August Pi i Sunyer, ES

SESSION | Population Genetics

CHAIR | Gonçalo Abecasis
University of Michigan, US

Carlos D. Bustamante
Cornell University, US

Richard Durbin
Wellcome Trust Sanger Institute, UK

Paul Flicek
European Bioinformatics Institute, UK

Noah Rosenberg
University of Michigan, US

(+) rs5754898(+)

rs1191221(+) rs4821241(+)

rs1873232(-)

rs1873231(-)

rs5754899(+)

rs1873230(-)

REGISTRATION DEADLINE
15 April 2010

Additional speakers will be
selected from abstracts.

CONTACT
gwen.sanderson@embl.de

www.embo-embl-symposia.org

◀ ONLINE REGISTRATION

ICSB edinburgh 2010

ICC Edinburgh

10 - 16 October 2010

The 11th International Conference on Systems Biology 2010
continues its annual series in the famous historic city of Edinburgh, Scotland

The ICSB serves as the main meeting for The International Society for Systems Biology (ISSB) who aim to help coordinate researchers to form alliances for meeting the unique needs of multidisciplinary and international systems biology research.

- Join us for the latest advances in systems biology
- Find out the new discoveries in pathways, informatics and computing
- Don't miss out on the cutting edge science!

Important Information for ICSB 2010

Session Topics:

- Applications in Medicine
- Functional Genomics and Biological Networks
- Computational Theory in Systems Biology
- The Spatial Dimension of Intracellular Dynamics
- Biomedical Simulations
- Understanding the Brain Function
- Computational Methods and Tools
- Cell Signalling Dynamics
- Systems Biology in Health and Disease
- Parameterising Proteomics
- Biological Rhythms
- Combinational Multi-scale Systems Responses in Biology and Medicine
- Engineering Aspects in Systems Biology
- Systems Biology and Metabolism
- Systems Science Behind Medical Application in Industry
- Biological Noise and Cellular Decision-Making

Keynote Speakers will include:

- Sydney Brenner
(Nobel Laureate)
- David Rand
- Denis Noble
- Steve Kay
- Luis Serrano
- Thomas Pollard

Important Dates:

5 January 2010	Delegate Registration Open
5 January 2010	Call for Papers Open
15 January 2010	Call for Tutorials Deadline
15 January 2010	Call for Workshops Deadline
3 May 2010	Call for Papers Deadline
2 June 2010	Early Registration Deadline
4 June 2010	Notification of Acceptance
1 October 2010	Pre-Registration Deadline
10 October 2010	ICSB 2010 Tutorials
11-14 October 2010	ICSB 2010 Conference
15 October 2010	ICSB 2010 Workshops

Cold Spring Harbor Perspectives in Biology

The Authoritative View

NEW!

www.cshperspectives.org

A New Type of Review Journal

Cold Spring Harbor Laboratory Press announces the launch of a new monthly online publication, *Cold Spring Harbor Perspectives in Biology*. Spanning the complete spectrum of the molecular life sciences, the journal offers article collections that comprehensively survey topics in molecular, cell, and developmental biology, genetics, neuroscience, immunology, cancer biology, and molecular pathology. Written by leading researchers and commissioned by an eminent board of editors, subject collections grow with every issue of the journal. *Cold Spring Harbor Perspectives in Biology* is thus unmatched in its depth of coverage and represents an essential source for informed surveys and critical discussion of advances in emerging areas of biology.

Scope: Molecular Biology, Cell Biology, Developmental Biology, Genetics, Immunology, Neurobiology
Monthly, online

ISSN: 1943-0264

Subject Coverage

Angiogenesis	The Extracellular Matrix	Mechanotransduction	Prokaryote Cell Biology
Antigen Processing	The Endoplasmic Reticulum	Membrane Fusion and Exocytosis	Protein Homeostasis
Apoptosis	The Evolution of Gene Networks	Mitochondria	Receptor Tyrosine Kinases
Auxin Signaling	Generation and Interpretation of Morphogen Gradients	Mitosis	Recombination Mechanisms
Axonal Guidance	Germ Cells	Molecular Motors	Regeneration
The Biology of Cardiovascular Disease	The Golgi Apparatus	Muscle Cell Biology	RNA Worlds
The Biology of Schizophrenia	Growth Factor Receptors	The NF- κ B Family	Sex Determination
Calcium Signaling	Immune Cell Signaling	Nuclear Hormone Receptors	Symmetry Breaking in Biology
Cell-Cell Junctions	Immune Tolerance	The Nucleus	Synapses
Cilia and Flagella	Lipid Cell Biology	The Origin of Life	Transcriptional Regulation
The Cytoskeleton	Lymphocyte Cell Biology	The p53 Family	Wnt Signaling
DNA Damage and Repair	Mammary Gland Biology	Prions	The Y Chromosome

To order or request additional information, please visit our website or:

Call: 1-800-843-4388 (Continental US and Canada) 516-422-4100 (All other locations)

FAX: 516-422-4097

E-mail: cshpress@cshl.edu

Write: Cold Spring Harbor Laboratory Press, 500 Sunnyside Blvd., Woodbury, NY 11797-2924

