

VOLUME 2, SUBJECT INDEX

Adapter tags, 21–27
AIDS virus, murine, PCR detection, 272–274
Allele frequencies, rapid determination of at loci exhibiting length polymorphism, 313–317
Allele-specific PCR. *See also* Mismatch amplification mutation assay
Amplicons, methods for detection, 1–9
Amplification, DNA
effect of RNA concentration on cDNA synthesis for, 86–88
from formalin-fixed tissue biopsy, 175–176
linear range of, 1–9
whole cDNA populations, strategies for, 185–190
Amplimers
partial sulfurization of and inhibition of degradation by Vent and *Taq* polymerases, 131–136
with 3'-terminal phosphothioate linkages, retard degradation and diminish mispriming, 131–136
Anchored PCR, use of for amplification and cloning of sugarcane sucrose synthases, 70–75
Apolipoprotein E genotyping, rapid semiautomated method for, 348–350
Artifacts, and DNA amplification from formalin-fixed tissue biopsy, 175–176
Astrocyte mRNAs, quantitation with method for rapid generation of deletion constructs, 66–69
Asymmetric PCR, construction of subtracted cDNA library with, 204–209
Automation
for apolipoprotein E genotyping, 348–350
detection of *Chlamydia trachomatis*, 167–171
diagnosis of β-thalassemia, 163–166
facilitation with PCR buffer optimization, 234–240
Autopsied tissue, PCR-based genetic analysis of DNA from, 354–355
Bacteriophage plaques, PCR characterization, 93–95
Beta-thalassemia, detection of common mutations of using MARMS, 163–166
Blood
dried, method of extracting DNA from, 177–179
Guthrie spots, direct PCR of for cystic fibrosis genotyping, 154–156
improved sample processing of for PCR, 149–153
BLV. *See* Bovine leukemia virus
Booster PCR, increased specificity for SSCP with, 45–50
Bovine leukemia virus proviral DNA, detection in individual cells, 333–340
Bubble tags, 21–27
Buffer, optimization of to facilitate PCR automation, 234–240
c-Ha-ras, measurement of mutation using MAMA, 14–20
Capillary PCR, sample preparation for, 261–262
6-Carboxy 4',5'-dichloro-2',7'-dimethoxy fluorescein, synthesis, labeling, purification, and quantification of oligonucleotides labeled with, 223–227
cDNA
subtracted library, construction with asymmetric PCR, 204–209
synthesis, for DNA amplification, effect of RNA concentration on, 86–88
whole sequences, amplification of with rPCR, 185–190
large, cloning of with anchored PCR, 70–75
CF. *See* Cystic fibrosis
Chelex 100, use of to reverse inhibitory effect of heparin on PCR, 356–358
Chemiluminescence
for detection of amplicons, 1–9
detection of DNA, and PCR, 228–233
Chlamydia trachomatis, immunogenetic recovery of from urine and colorimetric DNA detection, 167–171
Chromatin, analysis of structure of by ligation-mediated PCR, 107–111
Cloning
of unknown sequence with dU-containing linkers, 328–332
PCR fragments, improved method for using tailing procedure and overhangs, 81–82
Cohesive ends, UDG-mediated, 328–332
Colinear genes, selective detection of, 258–260
Colorimetric DNA detection, *Chlamydia trachomatis* after immunomagnetic recovery from urine, 167–171
Competitive PCR analysis, rapid method for synthesis of DNA fragments, 66–69
Conservation, evolutionary, PCR demonstration of for SRY-box motif, 218–222
Control templates, 91–92
Corynebacteria diphtheriae, PCR assay, 91–92
Cystic fibrosis
detection of delta F508 mutation with allele-specific PCR primers and time-resolved fluorometry, 157–162
genotyping by direct PCR of Guthrie blood spots, 154–156
Degenerate primers, use of with *Pfu* DNA polymerase for PCR, 346–347
Degradation, by Vent polymerase, is retarded by amplimers with 3'-terminal phosphothioate linkages, 131–136
Deletion artifacts, of tandem repeats during PCR, effect of primer selection on, 263–265
Deletion constructs, method for generating for competitive PCR assays, 66–69
Denaturing gradient gel electrophoresis with automated sequencing, rapid characterization of HIV-1 sequence diversity with, 293–300
detection limits of and detection of trace components in DNA templates, 112–116
and determination of Vent DNA polymerase fidelity, 288–292
method for attachment of universal 50-bp GC-clamp to PCR fragments for, 83–85
Deoxyinosine, PCR with degenerate primers containing, fails with *Pfu* DNA polymerase, 346–347
DGGE. *See* Denaturing gradient gel electrophoresis
DIANA. *See* Immunomagnetic separation
Dimethyl sulfoxide, optimum concentration of in PCR influenced by sequence within primer, 89–90
Dimethylsulfate, genomic footprinting with, 107–111
DMS. *See* Dimethylsulfate
DMSO. *See* Dimethyl sulfoxide
DN-PCR. *See* Double-nested PCR
DNA
BLV proviral, detection in individual cells, 333–340
deletion constructs, rapid synthesis of for mRNA quantitation, 66–69
flanking, amplification of up to 4.4 kb of, 197–203
large, ligation-mediated PCR of restriction fragments from, 21–27
megabase, amplification with rPCR, 185–190

method for extraction from Guthrie cards, 177–179

methylation patterns, LMPCR analysis, 107–111

PCR-amplified, variables for enhancing *in situ* hybridization detection of, 305–312

profiling, automated, by fluorescent labeling of PCR products, 34–40

quantitative analysis, PCR standards for, 1–9

sequence element, saturation mutagenesis with Mod-PCR 210–217

templates, PCR detection of trace components, 112–116

DNA-binding protein, single-stranded, use of in direct PCR sequencing of murine Ig gene, 99–101

DNA polymerase *Pfu*, use of degenerate primers with for PCR, 346–347

thermophilic, properties of, 275–287

Vent, mutations induced by during DNA amplification, 288–292

DNA polymerase I, *Thermus aquaticus*, expression, purification, and enzymatic characterization, 275–287

DNase I, genomic footprinting with, 107–111

Double-nested PCR, compared with heminested PCR, 241–249

dU excision, by UDG to create cohesive ends on PCR fragments, 328–332

Endonuclease digestion mapping, partial, PCR for, 228–233

F-SSCP. *See* Fluorescence single-strand conformation polymorphism

Failure, method for detecting in PCR, 91–92

False-negative reactions, method for detecting, 91–92

Fam-Oligow labeling method, effect in F-SSCP, 10–13

Ficoll-Hypaque, versus Roche Specimen Washing Solution for PBL separation, 149–153

Fidelity, Vent DNA polymerase, 288–292

Fixation time, effect on *in situ* hybridization detection of PCR-amplified DNA, 305–312

Fixatives, effect on *in situ* hybridization detection of PCR-amplified DNA, 305–312

FluorePrime labeling method, effect in F-SSCP, 10–13

Fluorescence single-strand conformation polymorphism analysis, 10–13

for detection of multiple point mutations, 323–326

Fluorescent dye, synthesis and characterization of oligonucleotides labeled with, 223–227

Fluorescent labeling, PCR products, automated DNA profiling with, 34–40

Fluorometry, time-resolved, use of with allele-specific PCR primers to detect delta F508 cystic fibrosis mutation, 157–162

Footprinting, genomic with DMS, 107–111
with DNase I, 107–111
in vivo, with UV light, 107–111

Formalin-fixed tissue biopsy, reliable typing of DNA amplified from, 175–176

gag target DNA, HIV, detection with closed reaction tube nested PCR method, 60–65

GC-clamp, universal 50-bp, attachment to PCR fragments, use in mutation analysis by DGGE, 83–85

Gene synthesis, method using overlap extension technique, 266–271

Genomic mapping, and long-distance PCR, 51–59

Genomic walking, 2- to 4-kb steps, with panhandle PCR, 197–203

Genotyping, apolipoprotein E, rapid semiautomated method for, 348–350

Guthrie blood spots, direct PCR of for cystic fibrosis genotyping, 154–156

Guthrie cards, method for extraction of DNA from, 177–179

HCV. *See* Hepatitis C virus

Heminested PCR
compared with double-nested PCR, 241–249
detection of HCV in plasma with, 241–249

Heparin, inhibitory effect on PCR, method for reversing in HLA class II typing, 356–358

Hepatitis B virus, PCR analysis, 191–196

Hepatitis C virus, detection in plasma with heminested PCR, 241–249

Heteroduplex DNA, double-stranded, detection of p53 mutations in human tumors as, 96–98

Heteroduplex formation, modeling of during PCR from mixtures of DNA templates, 112–116

HLA class II typing, method for reversing inhibitory effect of heparin on PCR for, 356–358

HN-PCR. *See* Heminested PCR

Hot start method
effect on *in situ* hybridization detection of PCR-amplified DNA, 305–312
as factor in quantitation, 1–9

Human immunodeficiency virus type 1 *gag* target DNA, detection with closed reaction tube nested DNA method, 60–65

PCR analysis, 191–196
rapid characterization of sequence diversity with DGGE and automated sequencing, 293–300
use of quantitative PCR to monitor DNA in blood, 1–9

Hybrid-selection, use of to increase PCR specificity, 41–44

Immunoglobulin genes, murine, direct PCR sequencing using *E. coli* single-stranded DNA protein, 99–101

Immunomagnetic separation, *Chlamydia trachomatis*, 167–171

IMS. *See* Immunomagnetic separation

In situ hybridization, variable for enhancing detection of PCR-amplified DNA, 305–312

In situ PCR, 305–312
reverse transcriptase, RNA targets, 117–123

Invisible mending, method to abolish mimicked restriction site, 328–332

JOE. *See* 6-Carboxy 4',5'-dichloro-2',7'-dimethoxy fluorescein

Large cDNAs, cloning of with anchored PCR, 70–75

Length polymorphism, rapid determination of allele frequencies at loci with, 313–317

Ligation-mediated PCR
analysis of chromatin structure, 107–111
restriction fragments from large DNA molecules, 21–27

LMPCR. *See* Ligation-mediated PCR

LOH. *See* Loss of heterozygosity

Long-distance PCR, optimization with transposon-based model system, 51–59

Loss of heterozygosity, PCR analysis of, 354–355

MAIDS virus, PCR detection, 272–274

MAMA. *See* Mismatch amplification mutation assay

MARMS. *See* Multiple amplification refractory mutation system

Measles virus, reverse transcriptase in situ PCR detection in HeLa and Dami cells, 117–123

Methylation patterns, DNA, LMPCR analysis, 107–111

Mismatch amplification mutation assay, 14–20

Mispriming, by *Taq* polymerase, reduced by amplimers with 3'-terminal phosphothioate linkages, 131–136

Mod-PCR, generation of random base substitution mutations in DNA sequence element, 210–217

Multiple amplification refractory mutation system, detection of common β -thalassemia mutations with, 163–166

Mutagenesis

- PCR
 - avoiding in unwanted mutations in, 253–257
 - randomization of genes by, 28–33
 - saturation, with Mod-PCR, 210–217
 - site-directed, PCR and UDG method for, 124–130
- Mutagenic oligonucleotide-directed PCR, generation of random base substitution mutations in DNA sequence element, 210–217
- Mutations
 - detection with F-SSCP, 10–13
 - measurement of in c-Ha-ras using MAMA, 14–20
 - misincorporation, unwanted mutations occurring during PCR, 253–257
 - random, generation of in DNA sequence element with Mod-PCR, 210–217
 - random point, PCR-derived library of in V3 region of SIV, 301–304
 - Taq* polymerase terminal transferase-like activity-generated, 253–257
 - unwanted, avoiding in PCR mutagenesis, 253–257
- Nested PCR, method with closed reaction tubes, 60–65
- Nucleic acids, quantitation with PCR, 1–9
- Nucleotide repeat polymorphic sequences, PCR analysis of in autopsied tissue, 354–355
- Oligonucleotides, 5'-fluorescent-dye-labeled, synthesis and characterization, 223–227
- Optimization, amplification step, as factor in quantitation, 1–9
- Overhangs, and tailing procedure, improved method for cloning PCR fragments, 81–82
- Overlap extension technique, method of total gene synthesis using, 266–271
- ^{32}P -labeled nucleotides, for detection of amplicons, 1–9, 261–262
- p53 gene
 - detection of loss of heterozygosities in tumor tissues with F-SSCP, 10–13
 - detection of mutations in tumors as single-stranded conformation polymorphs and double-stranded heteroduplex DNA, 96–98
- p53 genomic DNA, two-stage PCR of exons 5–9, 250–252
- p53 sequence, use of booster PCR to improve specificity and yield for SSCP, 45–50
- Panhandle PCR, genomic walking with, 197–203
- Paraffin wax, use of as vapor barrier in PCR, 180–181
- PBL. *See* Peripheral blood lymphocytes
- PCR
 - allele-specific. *See also* Mismatch amplification mutation assay
 - allele-specific primers, use of with time-resolved fluorometry to detect delta F508 cystic fibrosis mutation, 157–162
 - amplification of mixed allelic templates in direct proportion to stoichiometric fraction of each, 112–116
 - analysis of DNA from Guthrie cards, 177–179
 - anchored, use for amplification and cloning of sugarcane sucrose synthase cDNA, 70–75
 - asymmetric, construction of subtracted cDNA library with, 204–209
 - capillary, sample preparation for, 261–262
 - characterization of bacteriophage plaques, 93–95
 - colorimetric assay, combined with immunomagnetic recovery of *Chlamydia trachomatis* from urine, 167–171
 - competitive, 191–196
 - demonstration of evolutionary conservation of SRY-box motif, 218–222
 - detection of MAIDS virus, 272–274
 - direct, of Guthrie blood spots for cystic fibrosis genotyping, 154–156
 - effect of primer selection on artificial deletion of tandem repeat during, 263–265
 - heminested, detection of HCV in plasma with, 241–249
 - hybrid-selected, 41–44
 - improved blood sample processing for, 149–153
 - in situ, 305–312
 - ligation-mediated
 - analysis of chromatin structure, 107–111
 - of restriction fragments from large DNA molecules, 21–27
 - long-distance, optimization with transposon-based model system, 51–59
 - method for detecting failure, 91–92
 - and modified reverse transcription, for selective detection of colinear genes, 258–260
 - multiplex, use of to detect common mutations of β -thalassemia, 163–166
 - mutagenic oligonucleotide-directed, generation of random base substitution mutations in DNA sequence element, 210–217
 - nested, method with closed reaction tubes, 60–65
 - panhandle, genomic walking with, 197–203
 - for partial endonuclease digestion mapping, 228–233
 - quantitation of endomycorrhizal fungi colonizing roots by, 76–80
 - quantitative
 - strategies for, 191–196
 - versus semi-quantitative, 1–9
 - in virology, 191–196
 - RACE, lock-docking oligo(dT) primer for 5' and 3', 144–148
 - random, amplification of whole cDNA sequences with, 185–190
 - restriction-site, for unknown sequence retrieval, 318–322
 - reverse transcriptase
 - competitive, 191–196
 - in situ, RNA targets, 117–123
 - quantitative, in virology, 191–196
 - rapid, analysis of rare gene transcripts quantitatively with, 137–143
 - reverse transcription, use of stock solutions to simplify mRNA quantitation, 351–353
 - sequence-independent, 185–190
 - small-volume, sample preparation for, 261–262

<p>specificity increased</p> <ul style="list-style-type: none"> with booster PCR for SSCP, 45–50 by use of hybrid-selected template, 41–44 <p>total gene synthesis method using overlap extension technique, 266–271</p> <p>transposon-based, and long-distance PCR, 51–59</p> <p>two-stage, of p53 genomic DNA exons 5–9, 250–252</p> <p>and UDG, method for site-directed mutagenesis, 124–130</p> <p>understanding assay limits, 1–9</p> <p>use of paraffin wax as vapor barrier, 180–181</p> <p>using DNA generated by to generate truncated proteins, 172–174</p> <p>PCR-amplified DNA, variables for enhancing <i>in situ</i> hybridization detection of, 305–312</p> <p>PCR fragments</p> <ul style="list-style-type: none"> and attachment of universal 50-bp GC-clamp, use in mutation analysis by DGGE, 83–85 cloning, improved method for using tailing procedure and overhangs, 81–82 <p>PCR mutagenesis</p> <ul style="list-style-type: none"> avoiding unwanted mutations, 253–257 randomization of genes by, 28–33 <p>PCR products</p> <ul style="list-style-type: none"> automated DNA profiling of by fluorescent labeling, 34–40 Ig gene, direct sequencing of by inclusion of <i>E. coli</i> ssDNA binding protein, 99–101 <p>PCR-single-strand conformation polymorphism. <i>See also</i> Fluorescence single-strand conformation analysis</p> <p>Peripheral blood lymphocytes, separation and extraction method for amplification with <i>Taq</i> polymerase, 149–153</p> <p><i>Pfu</i> DNA polymerase, use of degenerate primers with for PCR, 346–347</p> <p>Phosphoramidite chemistry, synthesis of oligonucleotide with, 223–227</p> <p>Phosphothioate linkages, 3'-terminal, amplimers with retard degradation and diminish mispriming, 131–136</p> <p>Point mutations, multiple, detection of with fluorescence-based SSCP, 323–326</p> <p>Polymerase chain reaction. <i>See</i> PCR</p> <p>Polymorphisms</p> <ul style="list-style-type: none"> length, rapid determination of allele frequencies at loci with, 313–317 	<p>RAPD, reproducibility of among laboratories, 341–345</p> <p>Primers</p> <ul style="list-style-type: none"> degenerate, use of with <i>Pfu</i> DNA polymerase for PCR, 346–347 lock-docking oligo(dT), for 5' and 3' RACE-PCR, 144–148 mismatched, use in MAMA, 14–20 pairs, optimization with TNK buffers, 234–240 selection, effect on artifactual deletion of tandem repeat during PCR, 263–265 sequence influences optimum concentration of DMSO, 89–90 <p>Proofreading. <i>See</i> Fidelity; <i>see also</i> specific enzymes</p> <p>Prostate cancer, PCR-based analysis of DNA from autopsied tissue from, 354–355</p> <p>Protease digestion, effect on <i>in situ</i> hybridization detection of PCR-amplified DNA, 305–312</p> <p>Proteins, method for generating terminal and internal deletions starting from cDNA for corresponding mRNA, 172–174</p> <p>Quantitation</p> <ul style="list-style-type: none"> endomycorrhizal fungi colonizing roots, 76–80 HCV RNA in plasma, 241–249 issues of in PCR, 1–9 mRNA, rapid synthesis of DNA deletion constructs for, 66–69 nucleic acids, 1–9 and RT-PCR in virology, 191–196 <p>RACE PCR, lock-docking oligo(dT) primer for 5' and 3', 144–148</p> <p>Random amplified polymorphic DNA analysis, reproducibility of, 341–345</p> <p>Randomization, genes, use of PCR mutagenesis for, 28–33</p> <p>RAPD. <i>See</i> Random amplified polymorphic DNA analysis</p> <p>Rapid amplification of cDNA ends. <i>See</i> RACE</p> <p><i>ras</i> allele, transforming, measurement of copies of among wild-type allele using MAMA, 14–20</p> <p><i>ras</i> gene mutations, detection of with fluorescence-based SSCP, 323–326</p> <p><i>ras</i> sequence, use of booster PCR to improve specificity and yield for SSCP, 45–50</p> <p>Reproducibility, of RAPD among laboratories, 341–345</p>	<p>Restriction enzyme analysis, with partial digestions of PCR products, 228–233</p> <p>Restriction fragments, from large DNA molecules, ligation-mediated PCR of, 21–27</p> <p>Restriction site oligonucleotide, use of in method for retrieving unknown sequence, 318–322</p> <p>Restriction-site PCR, for unknown sequence retrieval, 318–322</p> <p>Reverse transcriptase</p> <ul style="list-style-type: none"> <i>in situ</i> PCR, RNA targets, 117–123 rapid PCR, analysis of rare gene transcripts quantitatively with, 137–143 <p>Reverse transcription</p> <ul style="list-style-type: none"> modified, and PCR for selective detection of colinear genes, 258–260 PCR, use of stock solutions to simplify mRNA quantitation, 351–353 <p>RNA</p> <ul style="list-style-type: none"> concentration, effect of on cDNA synthesis for DNA amplification, 86–88 low copy numbers, detection with reverse transcriptase <i>in situ</i> PCR, 117–123 quantitative analysis, PCR standards for, 1–9 <p>Roche Specimen Washing Solution, versus Ficoll-Hypaque for PBL separation, 149–153</p> <p>rPCR, for random amplification of whole DNA sequences, 185–190</p> <p>RS-PCR. <i>See</i> Restriction-site PCR</p> <p>RSO. <i>See</i> Restriction site oligonucleotide</p> <p>RT-RPCR. <i>See</i> Reverse transcriptase rapid PCR</p> <p>Sample preparation, for small-volume PCR, 261–262</p> <p>Saturation mutagenesis, with Mod-PCR, 210–217</p> <p>Sequence</p> <ul style="list-style-type: none"> diversity, HIV-1, rapid characterization of with DGGE and automated sequencing, 293–300 unknown <ul style="list-style-type: none"> cloning with dU-containing linkers, 328–332 retrieval with restriction-site PCR, 318–322 <p>Sequence tagged sites, use of PCR buffer optimization to screen large numbers, 234–240</p> <p>Sequencing, 3' and 5' ends of cDNA transcripts, use of lock-docking oligo(dT) primer, 144–148</p>
--	--	---

Sequencing	STS. <i>See</i> Sequence tagged sites	UDG. <i>See</i> Uracil DNA glycosylase; Uracil N-glycosylase
automated, combined with DGGE for rapid characterization of HIV-1 sequence diversity, 293–300	Subtracted cDNA library, construction with asymmetric PCR, 204–209	Universal primers, for restriction-site PCR, 318–322
genomic, possible use of ligation-mediated PCR, 21–27	Sucrose synthase, amplification and cloning of with anchored PCR, 70–75	Unknown fragments, amplification of with ligation-mediated PCR, 21–27
PCR, of murine Ig genes using <i>E. coli</i> ssDNA-binding protein, 99–101	3' to 5' exonuclease activity, restriction to proofreading by use of 3'-sulfurized amplimers, 131–136	Uracil DNA glycosylase, and PCR, method for site-directed mutagenesis, 124–130
shotgun, use of adapter tags for fragment rescue, 21–27	3'-Sulfurization, and reduction of 3' to 5' exonuclease truncation of amplimers, 131–136	Uracil N-glycosylase, dU excision with to create cohesive ends of PCR fragments, 328–332
Sex-determining region of Y chromosome. <i>See</i> SRY-box motif	Tailing procedure, and overhangs, improved method for cloning PCR fragments, 81–82	Urine, immunomagnetic recovery of <i>Chlamydia trachomatis</i> from and colorimetric DNA detection, 167–171
Short tandem repeat locus, determination of allele frequencies at in von Willebrand factor gene, 313–317	Tandem repeat, artifactual deletion during PCR, effect of primer selection on, 263–265	UV light, <i>in vivo</i> footprinting with, 107–111
Simian immunodeficiency virus, PCR-derived library of random point mutations in V3 region, 301–304	<i>Taq</i> DNA polymerase	Vapor barrier, use of paraffin wax for in PCR, 180–181
Single-cell analysis, detection of BLV proviral DNA, 333–340	method for reversing inhibitory effect of heparin on, 356–358	Variable 3 region, SIV, PCR-derived library of random point mutations in, 301–304
Single-strand conformation polymorphism analysis	mispriming by, reduced by amplimers with 3'-terminal phosphothioate linkages, 131–136	Variable number of tandem repeat region, determination of allele frequencies at, 313–317
detection of p53 mutations in human tumors, 96–98	utilization of sulfurized amplimers, 131–136	Variable number tandem repeat loci, automated DNA profiling by fluorescent tagging, 34–40
fluorescence-based, for detection of multiple point mutations, 323–326	<i>Taq</i> Pol I. <i>See</i> <i>Thermus aquaticus</i> DNA polymerase	Vent DNA polymerase
method for producing p53 exons suitable for, 250–252	<i>Taq</i> polymerase terminal transferase-like activity, mutations generated by, 253–257	deficient in proofreading 3' to 5' activity, fidelity of, 288–292
specificity and yield for increased with booster PCR, 45–50	Templates	degradation by is retarded by amplimers with 3'-terminal phosphothioate linkages, 131–136
Single-stranded DNA-binding protein, effect on <i>in situ</i> hybridization detection of PCR-amplified DNA, 305–312	hybrid-selected, use of to increase PCR specificity, 41–44	<i>Thermococcus litoralis</i> , mutations induced by during DNA amplification, 288–292
SIV. <i>See</i> Simian immunodeficiency virus	mixed allelic, PCR amplification in direct proportion to stoichiometric fraction of each, 112–116	utilization of sulfurized amplimers, 131–136
Small-volume PCR, sample preparation for, 261–262	<i>Thermococcus litoralis</i> Vent DNA polymerase, mutations induced by during DNA amplification, 288–292	Virology, quantitative PCR and RT-PCR in, 191–196
SOE method. <i>See</i> Spliced overlap extension method	<i>Thermus aquaticus</i> DNA polymerase I, expression, purification, and enzymatic characterization, 275–287	Viruses, RNA, detection with reverse transcriptase <i>in situ</i> PCR, 117–123
Specificity	Tissue biopsy, formalin-fixed, reliable typing of DNA amplified from, 175–176	VNTR. <i>See</i> Variable number tandem repeat
increased for SSCP with booster PCR, 45–50	TNK buffers, use in screening large numbers of STSs, 234–240	von Willebrand factor gene, determination of allele frequencies at short tandem repeat locus in, 313–317
increased with hybrid-selected PCR, 41–44	Transcription, RNA polymerase-mediated of PCR products, and <i>in vitro</i> translation of truncated proteins, 172–174	Yersinias, pathogenic, PCR assay, 91–92
Spliced overlap extension method, use with PCR to generate random point mutations in V3 region of SIV, 301–304	Transcripts, rare, quantitative analysis of with RT-RPCR, 137–143	Yield, increased for SSCP with booster PCR, 45–50
SRY-box motif, demonstration of evolutionary conservation with PCR, 218–222	TRF. <i>See</i> Fluorometry, time-resolved	
SS. <i>See</i> Sucrose synthase	<i>Tth</i> DNA polymerase, use of transposon-based model system for long-distance PCR, 51–59	
SSB. <i>See</i> Single-stranded DNA-binding protein		
Stock solutions, use of to simplify mRNA quantitation by RT-PCR, 351–353		
Stoffel fragment, expression, purification, and enzymatic characterization, 275–287		
STR. <i>See</i> Short tandem repeat		

VOLUME 2, AUTHOR INDEX

Abramson, R.D., 275
Adriano, T., 223
Allen, M., 182
Andersen, J.K., 172
Andersson, B., 293
Bagnarelli, P., 191
Bambot, S.B., 266
Benson, J.M., 45
Benson, P.D., 354
Bickham, J.W., 228
Blanchard, M.M., 234
Bloch, W., 305
Bolander, M.E., 318
Borson, N.D., 144
Bradley, W.G., 272
Breakefield, X.O., 172
Buell, R.D., 272
Bush, A., 341
Cadwell, C.R., 28
Casareale, D., 149
Cassiman, J.J., 348
Cattaneo, R., 356
Cha, R.S., 14
Chang, S.-Y., 275
Chen, D., 351
Chiang, L.W., 210
Conant, R., 163
Coriat, A.-M., 218
Crespiatico, L., 356
Cutler, A.J., 93
Da, Yang, 333
Dahlen, P., 157
Daniel, L.J., 241
Day, N.K., 272
Day, P.J.R., 328
de Noronha, C.M.C., 131
Desrosiers, R.C., 301
Diaco, R., 149
Dias, C., 288
Domier, L., 341
Dotti, G., 163
Drewes, L.R., 144
Falcinelli, C., 258
Fedak, G., 341
Feinstein, D.L., 66
Ferre, F., 1
Flora, S., 99
Fortina, P., 163
Froussard, P., 185
Galea, E., 66
Gallery, F., 305
Gelfand, D.H., 275
Gibbs, R.A., 293
Gill, P., 34
Glickman, B.W., 250
Good, R.A., 272
Gorevic, P.D., 117
Gorgone, G.A., 117
Guisti, W.G., 223
Guo, C., 348
Gurvita, A., 261
Gustavsson, I., 175
Gyllensten, U., 175, 182
Haas, G.P., 354
Harry, J.L., 218
Hayashi, K., 10
Hedrum, A., 167
Heidecker, G., 124
Hitchcock, W., 163
Hodgall, E., 157
Hom, R., 305
Hooper, W.C., 45
Houge, G., 204
Howe, M.M., 210
Hu, C-Y., 182
Hurskainen, P., 157
Hurte, I., 175
Iltiä, A., 157
Ishaq, M., 263
Ishino, Y., 323
Johnson, L.B., 89
Jones, D.H., 197
Joyce, G.F., 28
Kaplan, G., 154
Kasha, K., 341
Kato, I., 323
Keohavong, P., 14, 288
Kidd, K.K., 112
Kim, Won, 341
Kirchhoff, F., 301
Kishimoto, Y., 10
Klebe, R.J., 351
Knittel, T., 346
Kovari, I., 210
Kumar, A.S., 70
Kusser, W.C., 250
Lai, L.Y.C., 261
Lalonde, M., 76
Landre, P.A., 275
Laroche, A., 341
Lawyer, F.C., 275
Leigh, D.A., 261
Lévesque, C., 76
Levin, D.B., 250
Lewin, H.A., 333
Lewis, D.E., 293
Ling, L., 288
Lucas, W.T., 41
Lundeberg, J., 167
Lutz, C.T., 253
MacConnell, P., 117, 305
Macoska, J.A., 354
Magnuson, V.L., 351
Makino, R., 10
Malmgren, C., 175
Manzin, Al., 191
Maretzki, A., 70
Margiotta, M., 117
Marynen, P., 348
Masoud, S.A., 89
Massino, C., 191
McClure, M., 154
McDonald, B., 261
Menzo, S., 191
Mirsky, M.L., 333
Mitchell, D.B., 81
Molnar, S.J., 341
Monokian, G., 163
Moore, P.H., 70
Morales, J.C., 228
Müller, U., 218
Mullins, J.I., 131
Neilan, B.A., 261
Nocco, A., 356
Nowotny, P., 234
Nowotny, V., 234
Nuovo, G.J., 117, 305
Ogata, N., 272
Ohler, L.D., 51
Pacek, P., 305
Pahlson, C., 167
Pallen, M.J., 91
Parrella, T., 163
Patton, J.C., 228
Penner, G.A., 341
Pfeifer, G.P., 107
Phillips III, J.A., 154
Phillips, D.J., 45
Picard, D., 346
Poli, F., 356
Pope, S., 34
Pottahil, R., 149
Pruckler, J.M., 45
Puckey, L.H., 91
Quint, W., 258
Rapley, R., 99
Rappaport, E., 163
Rashchian, A., 124
Raskin, S., 154
Robertson, J.M., 34
Romeo, J.M., 241
Rose, E.A., 51
Rosenbaum, H., 86
Ruano, G., 112
Ruggli, N., 81
Russell, A.J., 266
Saiki, R., 275
Sajantila, A., 305
Sakr, W., 354
Saldeen, T., 175
Salo, W.L., 144
Sarkar, G., 318
Schwartz, E., 163
Scoles, G., 340
Sekiya, T., 10
Sharpe, P.T., 218
Shimada, A., 323
Siitari, H., 157
Simon, L., 76
Sircchia, G., 356
Smith, c., 327

Soto, D., 96
Sparkman, D.R., 180
Steffensen, B., 351
Stoffel, S., 275
Stoner, G.L., 263
Sukumar, S., 96
Sullivan, K.M., 34
Surrey, S., 163
Syvanen, A.-C., 305
Taillon-Miller, P., 234
Takahashi-Fujii, A., 323
Tan, S.S., 137
Thilly, W., 14
Thilly, W.G., 288
Thornton, C.G., 124
Titlow, C.C., 172
Top, B., 83
Tratschin, J-D., 81
Trofatter, J.A., 172
Turkeri, L.N., 354
Turner, R.T., 318
Uhlén, M., 167
Ulrich, P.P., 241
Uwanogho, D., 218
Valenza, A., 191
van Belkum, A., 258
van Doorn, L-V., 258
Varaldo, P.E., 191
Vnencak-Jones, C., 154
Vuust, J., 157
Vyas, G.N., 241
Walker, M.R., 328
Walker, R., 99
Wang, H., 93
Weiner, D.B., 86
Weis, J.H., 137
White, F.F., 89
Williams, W.V., 86
Winistorfer, S.C., 197
Wise, R., 341
Wren, B.W., 91
Yazyu, H., 10
Ying, J-H., 293
Youngner, J.S., 41
Yourno, J., 60
Zarbl, H., 14

Instructions for Authors

Submission of Papers

PCR Methods and Applications welcomes high-quality research papers that describe improvements in PCR methodology, new amplification methods, or the results of PCR application. The journal also publishes review and commentary articles, technical tips, and reader correspondence. All submissions to the journal will be peer-reviewed.

The journal accepts primary research papers and technical tips that present original research which has not previously been published. Submission to the journal implies that a paper is not currently being considered for another journal or book. It is also understood that investigators who submit research papers to the journal are prepared to make available to qualified academic researchers materials needed to duplicate their research results.

Review articles are commissioned. Authors wishing to submit review articles should first contact the Editor.

Contributors should submit their papers to:

Judy Cuddihy, Editor
PCR Methods and Applications
Cold Spring Harbor Laboratory
POB 100, 1 Bungtown Road
Cold Spring Harbor, New York 11724-2203
USA

Phone 516-367-8492
FAX 516-367-8532

One original and two copies of the manuscript should be submitted. Original photographs should be supplied with each copy.

Manuscript preparation

Papers accepted by the journal will occupy between 2 and 10 journal pages. A manuscript of 5 to 25 typed, double-spaced pages total (including methods, references, and figure legends) will translate to this length. Computer printouts should be of letter quality, and each page should be labeled with the first author's name and a page number. All figures should be labeled with the first author's name, the figure number, and an indication of the top. The size of figures will be adjusted to fit the journal format; therefore, please try to keep labels, symbols, and other call-out devices in proportion to the figure size and detail. Figures should be supplied as high-quality

glossy prints. Authors wishing to publish four-color art must pay part of the costs; price estimates will be provided on acceptance of a paper.

The following order of manuscript sections is preferred: Title page, abstract, introduction, methods, results, discussion, acknowledgments, references, tables, figure legends. The methods presented should be detailed enough to allow any qualified researcher to duplicate the results. References are cited by number in the text and the reference list should be numbered in the order the references are cited in the text. Bibliographic information should be supplied in the following order. For journal articles: Authors, year, article title, journal title, volume inclusive page numbers. For books: Authors, year, chapter title, book title, editors' names, volume, inclusive page numbers, publisher, city of publication.

Accepted manuscripts

Accepted manuscripts should be supplied on 3 1/2- or 5 1/4-inch discs to expedite typesetting. Please supply the manuscript as an ASCII file if possible. If a word-processing file is being sent, please do not use any underscoring, italic, or boldface; spell out special characters (Greek, math); use two carriage returns at the end of each paragraph, subheads, and list items. Indicate on the disc: computer brand name, type of file (text or word-processing), name of software, and disc format.

Proofs are considered the final form of the paper and correction can be made only in the case of factual errors. If additional information must be added at this stage, it should be in the form of "Note added in proof," subject to the approval of the editors.

Reprints may be ordered; a form will be included with the proofs.

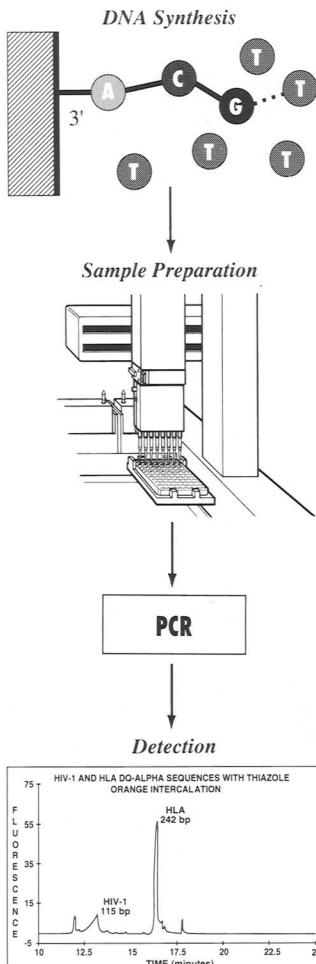
GENE RESEARCH

Improve your PCR process!

Optimizing each part of the pre- and post-PCR* process — primers, sample preparation, and product detection — maximizes the speed and cost efficiency of the process as a whole. Now laboratories can complete their research faster, more economically and with reliable results, by improving the critical steps of the PCR process using products from Beckman.

MAKE YOUR OWN OLIGONUCLEOTIDES IN LESS TIME, FOR LESS COST

Substantial time and cost advantages can be gained by synthesizing high-quality oligonucleotides immediately on demand. New from Beckman, the Oligo 1000 DNA Synthesizer simplifies oligonucleotide synthesis so that any researcher can easily make high-quality, research-ready oligonucleotides in four to five hours. No further purification is required prior to using your custom oligonucleotides in the PCR process.


Additionally, the Oligo 1000 DNA Synthesizer reduces costs by 30% or more. Scale of synthesis as low as 0.03 μ mole can be used. And reagent life is twice as long as is currently available on other DNA synthesizers.

AUTOMATE THE TEDIOUS SAMPLE PREPARATION STEPS

The BIOMEK® 1000 BioRobotics System from Beckman is ideally suited for precise and efficient pre- and post-PCR sample handling.¹ This fully automated workstation allows you to process thousands of samples per day. Accuracy and reproducibility of low volume pipetting reduces reagent costs and provides consistent reactions. Its ability to interface with a variety of labware offers the flexibility of using standard PCR plates and tube formats. Plus, contamination is effectively controlled with disposable aerosol-barrier pipette tips.

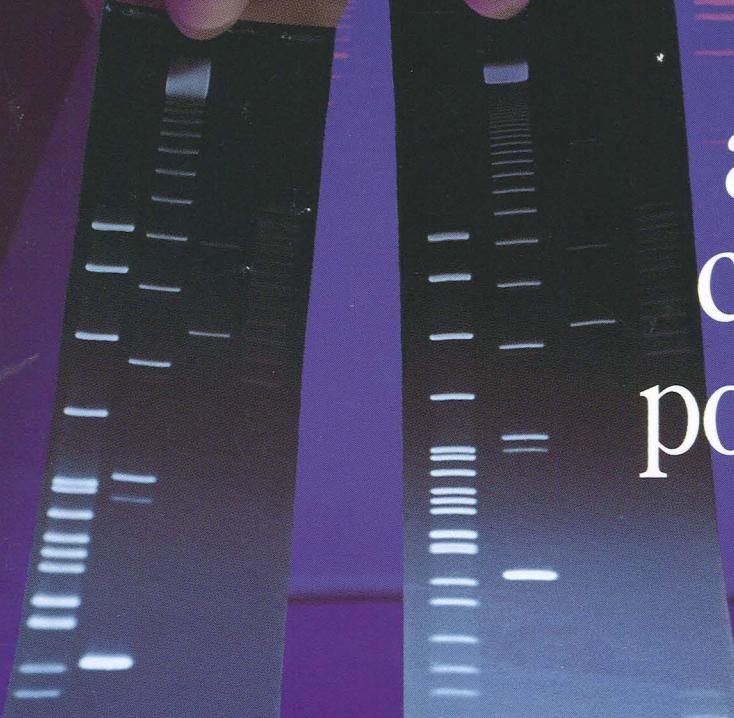
IMPROVE YOUR DETECTION THROUGH HIGHER SENSITIVITY AND LOWER SAMPLE CONSUMPTION

Laser-induced fluorescence (LIF) detection is ideally suited to improve detectability in capillary electrophoresis. The P/ACE™ 2000 Series Capillary Electrophoresis System with LIF detection from Beckman offers an alternative method to classical electrophoretic techniques for verification of the size and purity of PCR products. LIF sensitivity is comparable to autoradiography, delivering up to 400X better sensitivity than CE with UV detection using only nanoliters of the product.² PCR products prestained with intercalating dyes can be analyzed at extremely low levels. Plus, the P/ACE 2000 is fully automated; up to 23 samples may be loaded.

Start with high quality primers, automate sample preparation, and improve the detection process.

REACH THE FINISH LINE FASTER

Beckman products optimize accuracy with automation and operational simplicity before and after the amplification step. This assurance of lower cost, error-free performance is The Beckman Plus that will help you reach the finish line faster.


Ask your Beckman representative for free applications and technical information about DNA synthesis, BioRobotics, capillary electrophoresis, centrifugation, spectrophotometry, and other gene research products by calling 1-800-742-2345 (U.S.) or your local Beckman office.

* PCR is covered by U.S. patents owned by Hoffman-La Roche Inc.

¹ Mark Holodniy, Mark A. Winters and Thomas C. Merigan. *BioTechniques* 1992, Vol. 12, a: 1, 36-39.

² Herbert E. Schwartz and Kathi J. Ulfelder. *Anal. Chem.* 1992, 1737-1740.

BECKMAN

Introducing the first agarose that can challenge polyacrylamide.

MetaPhor agarose

Polyacrylamide

Until now, when you wanted the finest resolution of PCR* products and small DNA fragments (less than 800 bp), you probably made a polyacrylamide gel. Preparing that gel, however, was tedious and time-consuming.

But now there's something better. It's a new kind of agarose that not only offers speed and convenience, but also has twice the resolution capabilities of any other agarose. It's new MetaPhor™ agarose from FMC.

In fact, as you can see from the above results, MetaPhor agarose gives you resolution so fine (down to a 4 bp difference) that it rivals polyacrylamide. And we think that makes it a clear winner.

Just dissolve MetaPhor agarose in 1X TBE buffer, cast and chill the gel in your submarine chamber, load your samples, and go. It's as easy as that.

So take the MetaPhor challenge, and see how our new MetaPhor agarose performs. When you do, you'll understand why scientists who want the best go straight to the source. To learn more, or to place your order, call us today at **800-341-1574**.

Go straight to the source.

For Research Use Only. Not for use in diagnostic procedures.

FMC and MetaPhor are trademarks of FMC Corporation. U.S. Patent No. 5,143,646; applications in other countries. ©1993 FMC Corporation.
FMC BioProducts, 191 Thomaston Street, Rockland, ME 04841. Customer Service: 800-341-1574 Technical Service: 800-521-0390 FAX: (207) 594-3491
FMC BioProducts Europe, Risingejvej 1, DK-2665 Vallensbaek Strand, Denmark. Tel: 45-42-73-11-22 FAX: 45-42-73-56-92

*The PCR process is covered by U.S. patents owned by Hoffmann-LaRoche, Inc.