

"i can see what I've been missing."

"The sensitivity of Illumina's sequencing technology gives me a real edge in transcriptome profiling. I'm seeing more, and seeing it faster, than ever before. I'm not going back to exon or tiling arrays."

Rickard Sandberg, Ph.D.

Assistant Professor, Department of Cell and Molecular Biology
Karolinska Institutet, Stockholm, Sweden

See the transcriptome like never before. Unmatched sensitivity. Complete transcripts. Strand specificity. Answer any question using mRNA-Seq or Small RNA Analysis on the Genome Analyzer.

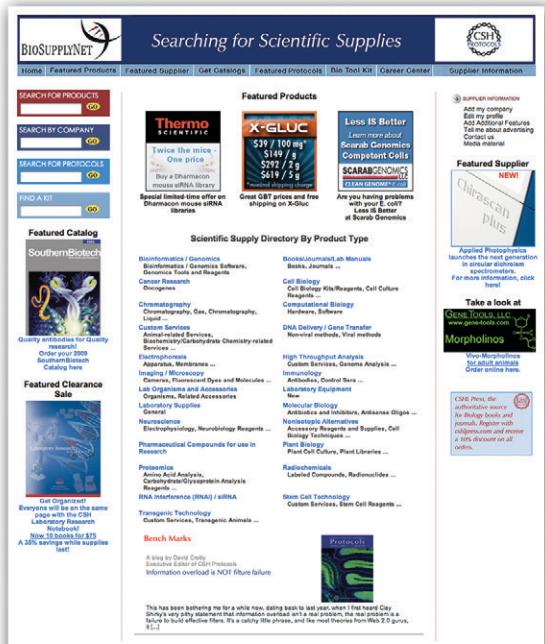
~~Next-gen Sequencing~~
now

Sign up for our upcoming webinars at
www.illumina.com/sequencingGR

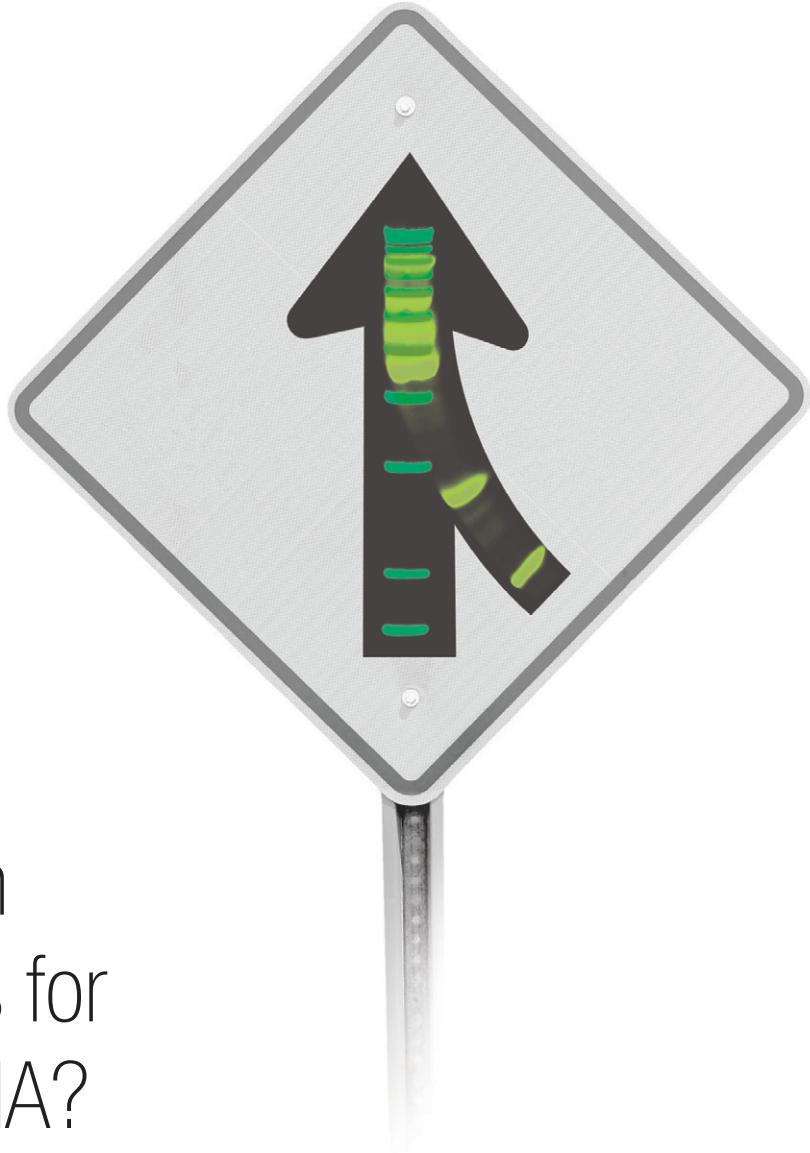
GENE EXPRESSION
SEQUENCING
GENOTYPING

illumina®

To catch the best deals and latest technology in life science, use the NET!


BIOSUPPLYNET

BioSupplyNet.com is your one-stop directory source for life science laboratory supplies and services. Concise and user-friendly, **BioSupplyNet.com** provides direct access to over 6500 companies and 20,000 products.


FEATURES:

- Download **FREE** protocols from Cold Spring Harbor Protocols—www.cshprotocols.org
- Search for the latest kits and catalogs
- See the latest products and special promotions
- Sign up for a free monthly newsletter detailing new protocols and products
- Visit our updated career center

www.BioSupplyNet.com

Hassling with different gels for DNA and RNA?

You need E-Gel® EX precast agarose gels

Separate DNA or RNA with one easy-to-use, precast gel system. Quickly access specific bands or retrieve your gel with our easy-to-open cassette design. Experience complete band separation in just 10 minutes, and get 5 times greater sensitivity than ethidium bromide. E-Gel® EX gels offer the flexibility, speed, and sensitivity you need to put answers in your hands sooner. Get the best from agarose gel electrophoresis—visit www.invitrogen.com/egalex and discover E-Gel® EX.

 invitrogen™

A★STAR INVESTIGATORSHIPS

A prestigious award to recognise young scientific talent

Singapore's Agency for Science, Technology & Research (A★STAR) invites applications for A★STAR Investigatorships

A★STAR Investigatorships aim to support and promote early independent career development of the next generation of world leaders in scientific research. Applicants should have obtained their PhD not more than 48 months prior to the application date, and should have already demonstrated a strong ability and creativity in research. Applicants with MD-PhD should be in their last year of, or have completed their clinical specialty training at the time of application.

The award provides for an **independent** position for a duration of 3+3 years, with a review at the end of the 2nd year and a possibility of "fast-track" promotion. Tenable at one of A★STAR's prestigious biomedical research institutes, **A★STAR Investigators** may select a mentor from A★STAR but will conduct and publish their research independently.

A★STAR Investigators will receive attractive remuneration, support for set-up costs, research funding, research staff and access to state-of-the-art scientific equipment and facilities including the Biopolis Shared Facilities and the Biological Resource Centre. Each **A★STAR Investigator's** laboratory will be funded with up to US\$500K p.a.

Candidates with research interest in these areas are strongly encouraged to apply:

- Bioimaging
- Biosensors and Biodevices
- Cell and Tissue Engineering
- Computational Biology in Systems Modeling or Transcriptional Regulation
- Discovery of Biomolecular Mechanisms using Theoretical Approaches
- Drug and Gene Delivery
- Epigenetic Regulation of Gene Expression
- Epithelial Biology
- Metabolic Medicine
- Molecular and Cellular Human Immunology
- Neuroscience
- Pharmaceuticals Synthesis and Nanobiotechnology
- Stem Cells

The **A★STAR Investigatorships Selection Panel**

- **Professor Tadataka Yamada**

President, Global Health Program, Bill and Melinda Gates Foundation

- **Professor Sir David Lane**

Chairman, Biomedical Research Council, A★STAR; and Chief Scientist, Cancer Research UK

- **Professor Edward Holmes**

Executive Deputy Chairman, Translational and Clinical Sciences, Biomedical Research Council, A★STAR; Executive Chairman, National Medical Research Council, Singapore

- **Professor Alex Matter**

Chief Executive Officer, Experimental Therapeutics Centre (ETC), A★STAR

Up to ten shortlisted candidates will be invited to Singapore for interviews and a review based on a scientific presentation, expected to be held in September 2009.

Applications close on 31 May 2009.

Applicants are requested to submit their CVs, including 3 letters of reference from academic referees, and a 5-page research proposal (1 hard copy and 1 soft copy) to:

A★STAR Investigatorships

Agency for Science, Technology & Research

20 Biopolis Way, #08-01 Centros

Singapore 138668

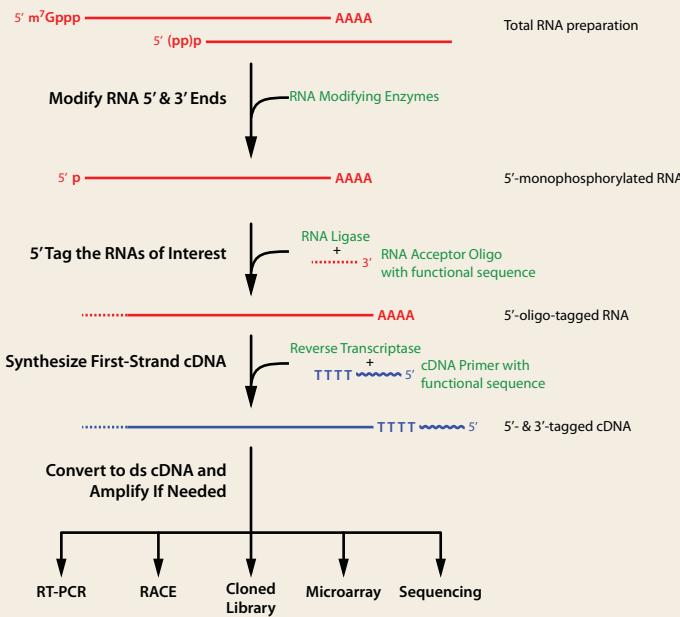
Email: A-STAR_ADMIN_BMRC@a-star.edu.sg

www.a-star.edu.sg/astar_investigators

**Agency for
Science, Technology
and Research**

The ExactSTART™ Platform for Transcript Discovery and Profiling: A Process for Tagging Any RNA Species in Less Than 1 Day without Gel Purification

Introduction


The ExactSTART™ Platform* technology enables the user to selectively “tag” the exact 5' nucleotide of any RNA species—such as mRNA, uncapped primary transcripts, miRNA and other small noncoding RNA—in a total RNA preparation. The tagged RNAs are converted to 5'- and 3'-end-tagged, double-stranded cDNA in less than 1 day, using a simple process that does not require gel purification.

- Discover and profile both coding and noncoding transcripts.
- Prepare template for a variety of applications, such as next-gen sequencing (RNA-seq), cloned libraries, RT-PCR, RACE, etc.
- Accurately map sites of transcription initiation and polyadenylation.
- Preserve the transcript's directional information.

Methods Overview

A general overview of the ExactSTART transcript tagging and amplification process is shown (Fig. 1) and summarized as follows:

1. Treat a total RNA or size-selected RNA sample with a discrete set of RNA modifying enzymes (Table 1) to generate substrates for tagging.

Figure 1. Overview of the ExactSTART™ transcript discovery and analysis process. The actual RNA modifying enzymes used (Table 1) and their order of use is dictated by the RNA species that you wish to tag. The tagging sequence included in the RNA Acceptor Oligo and the cDNA Primer is dependent on the intended downstream application.

2. Ligate a tagging sequence specific for the downstream application to the exact 5' nucleotide of the desired RNA.
3. Reverse-transcribe the tagged RNA into cDNA that is now tagged at both ends.

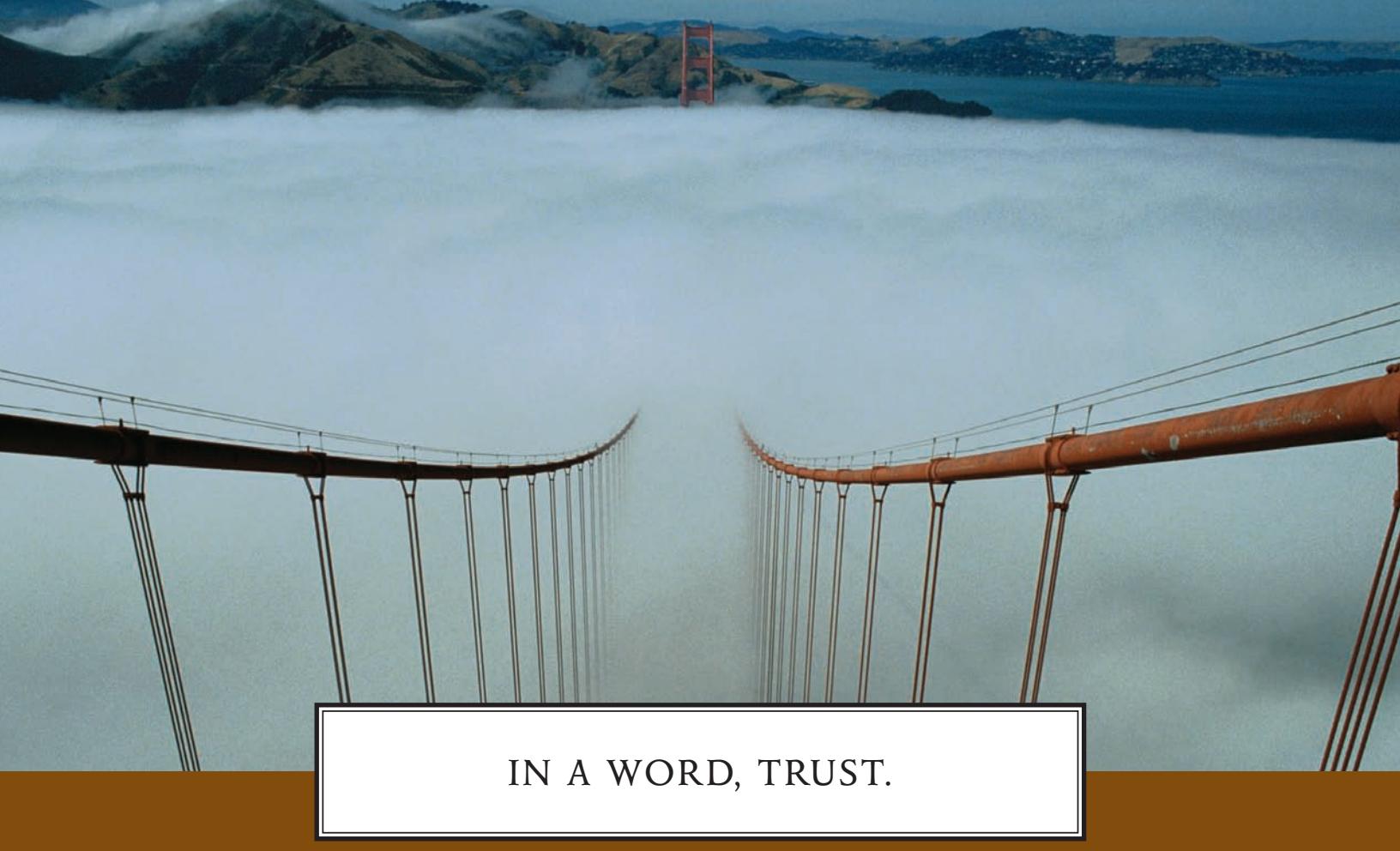
Table 1. The ExactSTART™ Platform of transcriptome discovery and profiling tools uses a select group of RNA modifying enzymes with strict enzymatic specificity. Shaded enzymes are unique to EPICENTRE.

RNA Modifying Enzyme	RNA Substrate(s) End-Product	Comments
RNA 5' Polypyrophosphatase*	5' pppN—3' → 5' pN—3'	Removes γ, β phosphates from RNA with 5'-triphosphorylated end.
Tobacco Acid Pyrophosphatase (TAP)	5' m ⁷ GpppN—3' → 5' pN—3' 5' pppN—3' → 5' pN—3'	Removes the 5' cap structure from 5'-capped RNA. Also removes γ, β phosphates from RNA with a 5'-triphosphorylated end.
Terminator™ 5'-Phosphate*-Dependent Exonuclease	5' pN—3' → NMPs	Degrades RNA with a 5'-mono-phosphorylated end.
APeX™ Heat-Labile Alkaline Phosphatase	5' pN—3' → 5' HO—3' 5' pppN—3' → 5' HO—3'	Removes terminal phosphates from RNA.
Polynucleotide Kinase (PNK)	5' HO—3' → 5' pN—3' 5' —Np 3' → 5' —OH 3'	Adds a phosphate to the 5'-hydroxyl end of RNA. Also removes 3' phosphate.
Poly(A) Polymerase	5' —OH 3' → 5' —AAAA 3'	Adds a poly(A) tail to the 3'-hydroxyl end of RNA.
RNA Ligase	5' —OH 3' (acceptor) + 5' pN—3' (donor) ↓ 5' —3'	Joins RNA with 5' monophosphate to RNA with a 3' hydroxyl.

Current ExactSTART™ Kits

- ExactSTART™ End-Tagged Double-Strand cDNA Synthesis Kit for Small RNA
- ExactSTART™ Small RNA Cloning Kit
- ExactSTART™ Eukaryotic mRNA 5' & 3'-RACE Kit
- ExactSTART™ Full-Length cDNA Library Cloning Kit

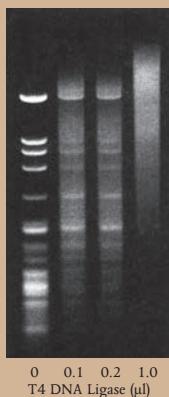
We invite you to visit www.EpiBio.com/exactstart/ to learn more about the ExactSTART Platform of products.


*Covered by issued and/or pending patents; see www.EpiBio.com/legal.

Special Offer!

Save 20% on any ExactSTART Kit*
Use discount code GR11

*Valid for U.S. customers only; limit one per customer. Expires May 31, 2009.


 EPICENTRE®
Biotechnologies
www.EpiBio.com 800-284-8474

IN A WORD, TRUST.

T4 DNA Ligase

New England Biolabs is dedicated to providing our customers with guaranteed enzyme performance. Our recombinant T4 DNA Ligase is the most extensively used ligase for cloning experiments and other applications, including sample preparation and next generation sequencing. It is available at exceptional value, and an even greater value when purchased in large quantities for high throughput technologies. For cohesive, blunt, simple or complex reactions, make T4 DNA Ligase from NEB your first choice.

Ligation of blunt-ended HaeIII fragments of Lambda DNA using various amounts of T4 DNA Ligase (400,000 cohesive end units/ml) in a 20 μl reaction volume. Reactions were incubated for 30 minutes at 16°C.

Ligation of HindIII fragments (4-base overhang) of Lambda DNA using 1 cohesive end unit (1 μl of 1:400 dilution) of T4 DNA Ligase. Reactions were incubated at 25°C.

Advantages:

Quality - Highly pure enzyme with no lot-to-lot variation

Convenience - Choose original T4 DNA Ligase or the Quick Ligation Kit to meet the demands of a variety of reaction conditions

Flexibility - Active at room temperature or 16°C; reaction times run from 5 minutes to overnight

Robustness - Active in a variety of reaction buffers

T4 DNA Ligase*

Regular Concentration M0202S/L
For standard cloning reactions

High Concentration M0202T/M
For large or difficult constructs

Quick Ligation™ Kit* M2200S/L
For ligation of cohesive or blunt-end DNA fragments in 5 minutes at room temperature

* = Recombinant

* NEB ligase products are BSA-free

For more information regarding customization and OEM opportunities, please contact oem@neb.com

New England Biolabs, Inc. is an ISO 9001 certified company

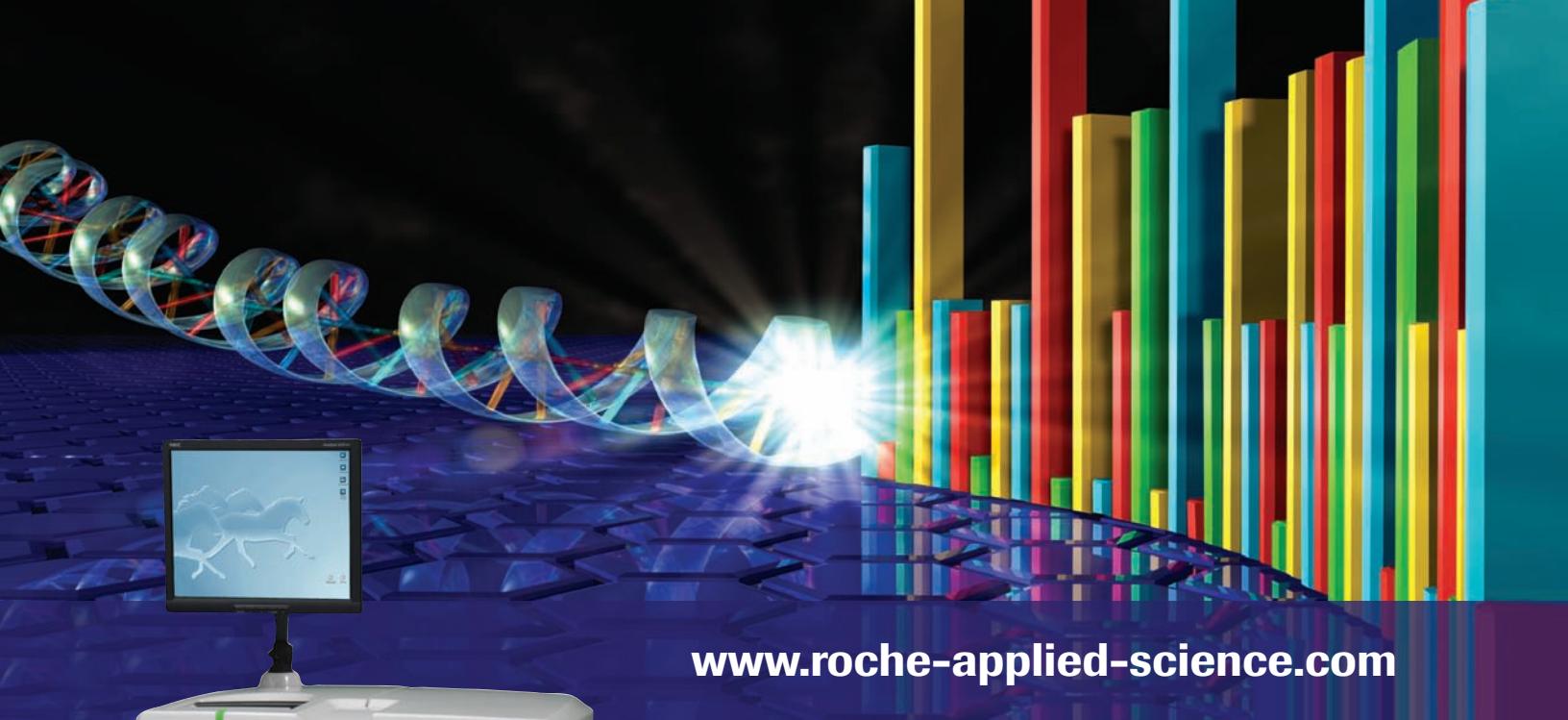
NEW ENGLAND
BioLabs®
Inc.
enabling technologies in the life sciences

CLONING & MAPPING

DNA AMPLIFICATION & PCR

RNA ANALYSIS

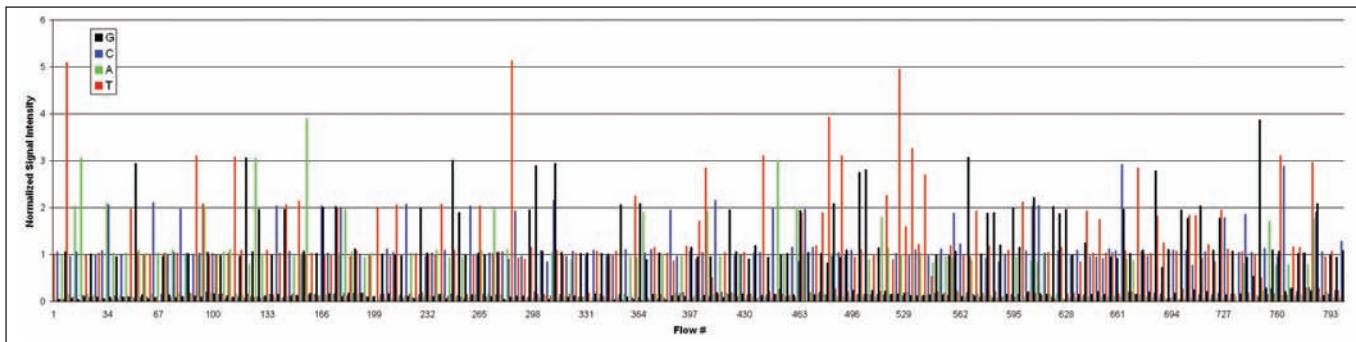
PROTEIN EXPRESSION & ANALYSIS


GENE EXPRESSION & CELLULAR ANALYSIS

With a limited view, you're simply left guessing.

With GeneChip® Exon and Gene Arrays, you don't have to guess. Whole-transcript expression arrays allow you to measure the entire transcript, enabling you to detect gene-level expression, exon-level expression, and alternative splicing in a single experiment. Why settle for incomplete results when you can look beyond the 3' end of a gene? Extrapolation can only take you so far—Affymetrix will take you the rest of the way.

See the real biology at www.affymetrix.com/genechip/wtexpression


www.roche-applied-science.com

Genome Sequencer FLX System

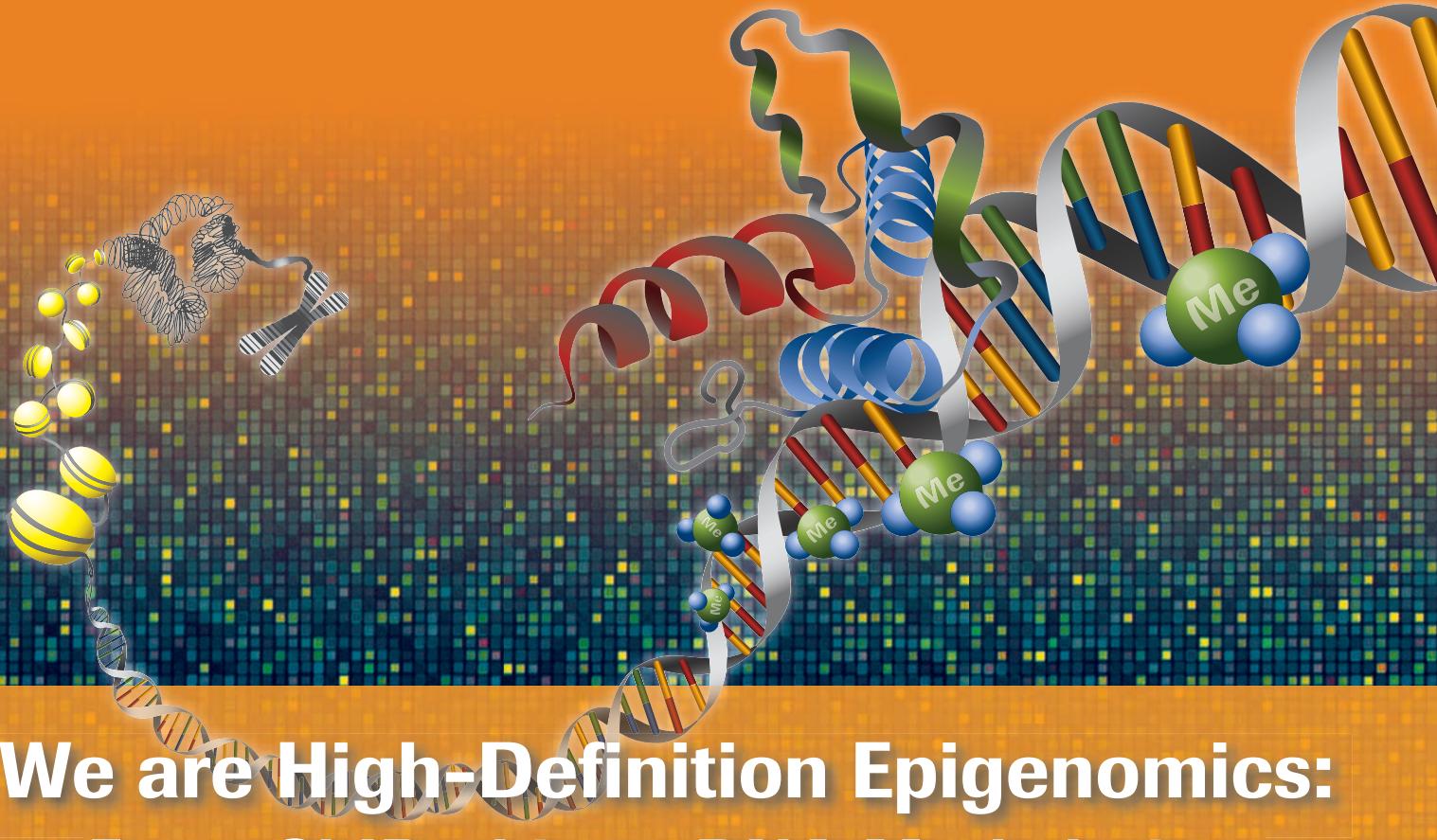
Really
Length Matters

Introducing the GS FLX Titanium Reagents

DNA Sequencing Flowgram: Each bar within the flowgram represents a discrete nucleotide (A, T, C, or G) and the height of the bar corresponds to the number of nucleotides detected. The flowgram above represents a 458-base-pair sequencing read from *E. coli* K-12.

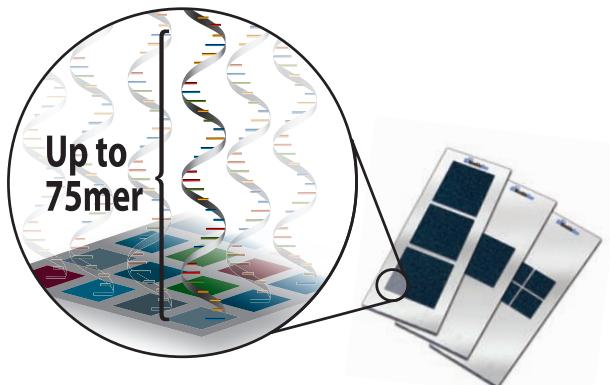
- Obtain sequencing read lengths of 400 to 500 bases.
- Generate more than 1 million sequencing reads per 10-hour instrument run.
- Improve performance by using GS FLX Titanium reagents – without instrument upgrades.
- Perform more applications with longer sequencing reads.

Learn more at www.454.com


454

SEQUENCING

For life science research only. Not for use in diagnostic procedures.
454, 454 LIFE SCIENCES, 454 SEQUENCING, and GS FLX TITANIUM are trademarks of Roche.
Other brands or product names are trademarks of their respective holders.
© 2009 Roche Diagnostics. All rights reserved.


Roche Diagnostics
Roche Applied Science
Indianapolis, Indiana

We are High-Definition Epigenomics: From ChIP-chip to DNA Methylation

Your microarray solution for unraveling the epigenetic origins of disease

Roche NimbleGen is the only microarray manufacturer to combine ultra-high probe density with long, isothermal oligonucleotide probes (50 - 75mers), and superior design flexibility. Pictured above, from left to right, are NimbleGen 2.1M, 385K, and 4x72K array formats.

- **High Density Array Content:** Utilize up to 2.1 million probes for high-resolution genome-wide mapping of protein binding sites, chromatin structure, and DNA methylation.
- **High Sensitivity and Specificity:** Detect ultra-low fold enrichment with isothermal, long oligonucleotide probes (50 - 75mer), while eliminating interarray variation with our 2-color labeling protocol.
- **Comprehensive Array Designs:** For target applications including cancer, pediatric syndromes and genetic disorders, choose from catalog Whole-Genome, Promoter, and CpG island designs or customize content to meet your research needs.
- **Flexible Access Options:** Perform experiments in your own laboratory with our arrays, reagents, and instruments or send your samples to us and let us do the work for you.
- **Proven Publication Record:** Over 130 ChIP-chip and 30 DNA Methylation peer-reviewed publications featuring NimbleGen technologies.

Visit us online or call:
www.nimblegen.com/epigenetics
(877) NimbleGen / (608) 218-7600

For life science research only. NIMBLEGEN is a trademark of Roche.
© 2009 Roche NimbleGen, Inc. All Rights Reserved.

Roche NimbleGen, Inc.
Madison, WI USA

CAREER TRACKS

Dedicated entirely to Employment, Conferences, Meetings, Fellowships, and Grants

Department of Health and Human Services
National Institutes of Health, National Cancer Institute
Center for Cancer Research

BIOINFORMATICIAN / BIOINFORMATICS SCIENTIST

The Laboratory of Biochemistry and Molecular Biology (LBMB), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland is seeking a mid-level or senior bioinformatics scientist. The candidate should have a B.S., M.S. or Ph.D. degree in Bioinformatics, Computer Science, or the equivalent. Previous experience with biological research and working knowledge of the statistical tools appropriate to task is preferred.

The successful candidate will have experience analyzing high-throughput genomic datasets derived from ChIP-chip and ChIP-Seq technologies, familiarity with available software tools for analyzing these data, and the ability to develop tools where none are available. Candidate should be proficient in performing basic quality control and analysis such as data set normalization, significance testing, clustering, identification of gene regulatory themes, and mapping of binding events; be able to provide support in custom microarray design and in the visualization and quantification of large datasets; and be able to communicate effectively with and feel comfortable working closely with a group of biochemists and molecular biologists with diverse research interests. Salary will be commensurate with experience and accomplishments, and a full Civil Service package of benefits (including retirement, health, life and long term care insurance, Thrift Savings Plan participation, etc.) Hiring will occur under the Title 42 appointing mechanism, which is a time-limited appointment.

Interested applicants should send a cover letter, curriculum vitae, and three letters of reference to:

Ms. Azalia Zandieh,
National Cancer Institute
National Institutes of Health
9000 Rockville Pike
Building 37, Room 6106C
Bethesda, MD 20892-4260
Email: zandieha@mail.nih.gov

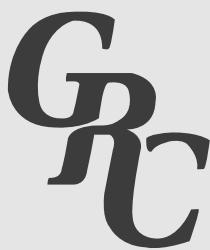
DHHS, NIH, and NCI are Equal Opportunity Employers

Postdoctoral Positions at Cold Spring Harbor Laboratory

Cold Spring Harbor Laboratory is a world-renowned research and educational institution recognized internationally for its excellence in ground-breaking research and educational activities. We invite highly motivated individuals to visit our website at www.cshl.edu to review and apply for current postdoctoral opportunities in the following areas.

Cancer Research: Members of the CSHL Cancer Center are involved in studies focused on cancer genomics, signal transduction, mouse models, gene expression, cell proliferation and tumor biology.

Neuroscience: The primary focus of the CSHL Neuroscience program is neural circuits and how disruption of these circuits leads to disorders including autism and schizophrenia. Research is being carried out at the genetic, molecular, developmental, systems, behavioral and computational levels.


Plant Biology: The CSHL Plant Biology program focuses primarily on development, stem cells, morphogenesis, plant genomics and epigenetics.

Genomics and Bioinformatics: The CSHL Genomics program uses state-of-the-art technologies including high-throughput sequencing, copy number variation analysis and transcriptome analysis. Efforts are ongoing to understand genomic variation associated with several human diseases as well as elucidating and characterizing new functional outputs of the genome.

Quantitative Biology: The CSHL Center for Quantitative Biology is comprised of scientists in the fields of physics, computer science, engineering, statistics and applied mathematics dedicated to applying quantitative methods to studies in human genetics, genomic, neurobiology, and signal and image processing.

Cold Spring Harbor Laboratory
Human Resources
One Bungtown Road
Cold Spring Harbor, NY 11724
Website: www.cshl.edu

Cold Spring Harbor Laboratory is an Equal Opportunity Employer.

Gordon Research Conferences

For over 75 years, GRC's high-quality, cost-effective meetings have been recognized as the world's premier scientific conferences, where leading investigators from around the globe discuss their latest work and future challenges in a uniquely informal, interactive format.

If you can attend only one meeting in 2009, why not visit the *Frontiers of Science*? Apply to a GRC now and see why attendees consistently rate them "the best conference I've attended this year".

Epigenetics

The Role Of The Environment And Epigenetic Mechanisms In Behavior, Health, And Disease

August 9-14, 2009

Holderness School, Holderness, NH

Evolutionary & Ecological Functional Genomics

July 12-17, 2009

Tilton School, Tilton, NH

Genetic Toxicology

August 9-14, 2009

Colby-Sawyer College, New London, NH

Human Genetics & Genomics

July 19-24, 2009

University of New England, Biddeford, ME

Nucleic Acids

May 31 - June 5, 2009

University of New England, Biddeford, ME

Stem Cells & Cancer

Molecular Mechanisms Controlling Normal And Cancer Stem Cells

September 13-18, 2009

Les Diablerets Conference Center, Les Diablerets, Switzerland

For program information, fees and site/travel information, please visit our web site: www.grc.org

Tenure Track/Tenure Investigator Positions in Systems Immunology and Infectious Disease Modeling

The National Institute of Allergy and Infectious Diseases (NIAID), Division of Intramural Research (DIR), is seeking several outstanding individuals for its new Program in Systems Immunology and Infectious Disease Modeling (PSIIM) — <http://www3.niaid.nih.gov/labs/aboutlabs/psiim/>.

Modern technology allows the deep analysis of biological systems at multiple levels—from intracellular signaling networks to individual cell behavior to the functioning of a tissue, organ, and even the whole organism. The challenge is not only to collect the large amounts of data these technologies can generate, but also to organize it in a manner that enhances our understanding of how such systems operate. To do this, it is necessary to develop quantitative models that can be used to predict behavior of these complex systems.

Achieving this goal requires an interdisciplinary effort, and for this reason PSIIM is organized as an integrated team of scientists and support staff. Within PSIIM, there will be groups with expertise in the areas of computational biology, bioinformatics, proteomics, genomics, cell biology, immunology, and infectious diseases. These groups will have access to the latest technology for gene expression profiling, high content screening of RNAi libraries for the discovery of pathway components, imaging tools, genomic and proteomic analysis, cores for the genetic manipulation of animals, and a substantial computer infrastructure. They will also have access to BSL-3 facilities for working with infectious agents of high priority for human health and biodefense.

Although PSIIM has been established within NIAID and has an immune/infectious disease focus, it is also expected to play a major role in fostering the growth of systems biology efforts throughout NIH and involving diverse biomedical areas. PSIIM staff will interact extensively with investigators in other components of the NIH intramural research program, including but not limited to the National Center for Biotechnology Information, NIH Chemical Genomics Center, Center for Information Technology, and Center for Human Immunology, all of which have activities emphasizing systems and informatic approaches to biomedicine.

Current groups in the PSIIM include Computational Biology—Modeling and Simulation, Molecular/ Cell Biology—High-throughput Screening, Proteomics, and Immunology. PSIIM is now recruiting for tenure-track

or tenure level team leader appointments in the following areas:

Bioinformatics/Biostatistics: The incumbent will lead a group focused on developing and implementing computational tools and statistical methods for the analysis of large-scale genomic, proteomic, and cell biological datasets. The ideal candidate will have a strong background in statistics, mathematics, programming, and modeling biological systems, as well as a strong interest in collaborating with experimentalists to elucidate biological mechanisms through application of informatic methods, including construction of networks suitable for predictive analysis. The group will include expertise in statistics, software development (C++, Java, Perl, SQL, etc.), knowledge of existing and emerging bioinformatic tools, databases and algorithms, and experience with heterogeneous computer environments.

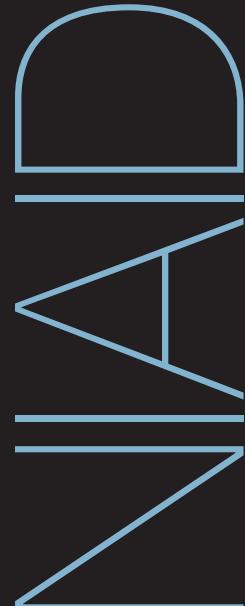
Genomics: The incumbent will be responsible for applying and, when necessary, developing novel methods for the systems-wide analysis of such issues as transcription factor and epigenetic control of gene expression, quantitative measurement of gene expression, and the role of non-coding regions and small RNAs in regulating gene/gene product expression patterns. PSIIM is especially interested in recruiting an individual with a strong interest in the

application of these methods to the study of gene regulatory circuits and to the integration of information on cell signaling events, developmental state, and such gene regulatory circuits into comprehensive models of the control of cellular differentiation, for example, of effector CD4+ T cells or iPSCs.

These positions and the research activities they conduct are fully funded by the intramural research program of NIAID. Each team leader is expected to build a working group consisting of postdoctoral fellows, students, technicians, and staff scientists. The team leaders will work with the program director to help set the goals for PSIIM and to determine how best to reach these goals as an integrated group. To ensure appropriate career trajectories for those joining the PSIIM team effort, NIH has modified its tenure policies to take specific account of contributions made in such a team science setting. Members of PSIIM will be expected to play a major role in development of an integrated computational systems approach to biology, the application of these methods to questions of substantial biomedical importance, and the dissemination of the tools and techniques developed in PSIIM across the NIH intramural program and in the extramural academic and industrial spheres. Applicants should be seeking a challenge in which creativity, technical expertise, and a strong desire to achieve in a team setting will be critical for success

Interested candidates may contact:

Ronald Germain, M.D., Ph.D., Program Director, PSIIM, DIR, NIAID, at 301-496-1904 or rgermain@niaid.nih.gov for additional information about these positions.


Applicants must have a Ph.D., M.D., or equivalent degree in a relevant field with extensive post-doctoral experience, as well as a strong publication record demonstrating potential for creative research.

To apply, submit your curriculum vitae, bibliography, and a detailed statement of how your expertise can contribute to the success of the PSIIM program to Wanda Jackson at NIAID.DIR.Search@niaid.nih.gov. In addition, three letters of reference must be sent directly from the referee to Robert Hohman, Ph.D., Chair, NIAID Search Committee, c/o Wanda Jackson at NIAID.DIR.Search@niaid.nih.gov or 10 Center Drive, MSC 1356, Building 10, Room 4A22, Bethesda, MD 20892-1356. Email is preferred.

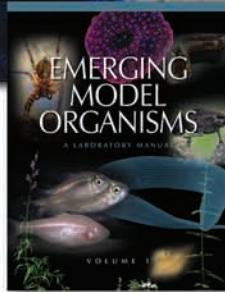
Completed applications MUST be received by May 1, 2009.

Further information regarding the DIR laboratories is available at <http://www3.niaid.nih.gov/about/organization/dir/default.htm>, and information on working at NIAID is available on our Web site at <http://www.niaid.nih.gov/careers/dps>.

For more information about the NIAID systems biology program, please visit <http://www.nih.gov/catalyst/2006/06.09.01/page1.html>

National Institute of Allergy and Infectious Diseases

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES
National Institutes of Health



National Institute of Allergy and Infectious Diseases

Proud to be Equal Opportunity Employers

EMERGING MODEL ORGANISMS

A Laboratory Manual, Volume 1

Until recently, a small number of model organisms has been the focus of most research in molecular, cellular, and developmental biology. But in the last few years, due in part to increased interest in questions of evolution, technical advances in selectively altering gene expression patterns, and the reduced costs of genome sequencing, the range of organisms used for research is greatly expanding. *Emerging Model Organisms, Volume 1*, introduces the reader to this new generation of model organisms, providing a diverse catalog of potential species useful for extending research in new directions. In this volume leading experts provide chapters on 23 emerging model systems, ranging from bat and butterfly to cave fish and choanoflagellates; cricket and finch to quail, snail, and tomato. Subsequent releases of the *Emerging Model Organisms* series, already in preparation, will focus on additional species.

Published in November 2008, 592 pp., illus., appendix, index

Hardcover \$158

Paperback \$89

ISBN 978-087969826-3

ISBN 978-087969872-0

CONTENTS

1. The Choanoflagellates: Heterotrophic Nanoflagellates and Sister Group of the Metazoa
N. King, S.L. Young, M. Abedin, M. Carr, and B.S.C. Leadbeater
2. *Dictyostelium discoideum*: The Social Ameba
P. Gaudet, P. Fey, and R. Chisholm
3. The Moss *Physcomitrella patens*: A Novel Model System for Plant Development and Genomic Studies
D.J. Cove, P-F Perroud, A.J. Charron, S.F. McDaniel, A. Khandelwal, and R.S. Quatrano
4. The Genus *Antirrhinum* (Snapdragon): A Flowering Plant Model for Evolution and Development
A. Hudson, J. Critchley, and Y. Erasmus
5. Tomato (*Solanum lycopersicum*): A Model Fruit-bearing Crop
S. Kimura and N. Sinha
6. The Demosponge *Amphimedon queenslandica*: Reconstructing the Ancestral Metazoan Genome and Deciphering the Origin of Animal Multicellularity
B.M. Degnan, M. Adamska, A. Craigie, S.M. Degnan, B. Fahy, M. Gauthier, J.N.A. Hooper, C. Larroux, S.P. Leys, E. Lovas, and G.S. Richards
7. Comb Jellies (Ctenophora): A Model for Basal Metazoan Evolution and Development
K. Pang and M.Q. Martindale
8. Planarians: A Versatile and Powerful Model System for Molecular Studies of Regeneration, Adult Stem Cell Regulation, Aging, and Behavior
N.J. Oviedo, C.L. Nicolas, D.S. Adams, and M. Levin

9. The Snail *Ilyanassa*: A Reemerging Model for Studies in Development
M. Gharbiah, J. Cooley, E.M. Leise, A. Nakamoto, J.S. Rabinowitz, J.D. Lambert, and L.M. Nagy
10. *Helobdella* (Leech): A Model for Developmental Studies
D.A. Weisblat and D.-H. Kuo
11. *Pristionchus pacificus*: A Genetic Model System for the Study of Evolutionary Developmental Biology and the Evolution of Complex Life-history Traits
R. Rae, B. Schlager, and R.J. Sommer
12. The African Butterfly *Bicyclus anyana*: A Model for Evolutionary Genetics and Evolutionary Developmental Biology
P.M. Brakefield, P. Beldade, and B.J. Zwaan
13. The Two-spotted Cricket *Gryllus bimaculatus*: An Emerging Model for Developmental and Regeneration Studies
T. Mito and S. Noji
14. The American Wandering Spider *Cupiennius salei*: A Model for Behavioral, Evolutionary, and Developmental Studies
N.-M. Prpic, M. Schoppmeier, and W.G.M. Damen
15. The Crustacean *Parhyale hawaiensis*: A New Model for Anthropod Development
E.J. Rehm, R.L. Hannibal, R.C. Chau, M.A. Vargas-Vila, and N.H. Patel
16. The Sea Lamprey *Petromyzon marinus*: A Model for Evolutionary and Developmental Biology
N. Nikitina, M. Bronner-Fraser, and T. Sauka-Spengler

17. The Dogfish *Scyliorhinus canicula*: A Reference in Jawed Vertebrates
M. Coolen, A. Menuet, D. Chassoux, C. Compagnucci, S. Henry, L. Lévéque, C. Da Silva, F. Gavory, S. Samain, P. Wincker, C. Thermes, Y. D'Aubenton-Carafa, I. Rodriguez-Moldes, G. Naylor, M. Depew, P. Sourdaine, and S. Mazan

18. The Genus *Polypterus* (Bichirs): A Fish Group Diverged at the Stem of Ray-finned Fishes (Actinopterygii)
M. Takeuchi, M. Okabe, and S. Aizawa

19. *Astyanax mexicanus*, The Blind Mexican Cave Fish: A Model for Studies in Development and Morphology
R. Borowsky

20. Darwin's Finches: Analysis of Beak Morphological Changes During Evolution
A. Abzhanov

21. Japanese Quail: An Efficient Animal Model for the Production of Transgenic Avians
G. Poynter, D. Huss, and R. Lansford

22. The Short-tailed Fruit Bat *Carollia perspicillata*: A Model for Studies in Reproduction and Development
J.J. Rasweiler IV, C.J. Cretkos, and R.R. Behringer

23. Opossum (*Monodelphis domestica*): A Marsupial Developmental Model
A.L. Keyte and K.K. Smith

General Cautions Appendix
Index

www.cshlpress.com

To order or request additional information, please visit our website or:

Call: 1-800-843-4388 (Continental US and Canada) 516-422-4100 (All other locations)

Fax: 516-422-4097

E-mail: cshpress@cshl.edu

Write: Cold Spring Harbor Laboratory Press, 500 Sunnyside Blvd., Woodbury, NY 11797-2924

