

Commentary and Review

Perspective

Evolution and multilevel optimization of the genetic code 401
 Tobias Bollenbach, Kalin Vetsigian, and Roy Kishony

Research

Letters

The genetic code is nearly optimal for allowing additional information within protein-coding sequences 405^{OA}
 Shalev Itzkovitz and Uri Alon

Using genomic data to unravel the root of the placental mammal phylogeny 413
 William J. Murphy, Thomas H. Pringle, Tess A. Crider, Mark S. Springer, and Webb Miller

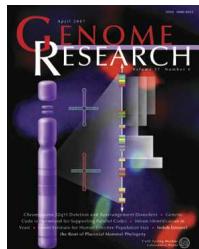
The evolutionary history of human DNA transposons: Evidence for intense activity in the primate lineage 422
 John K. Pace II and Cédric Feschotte

Novel noncoding RNA from human Y distal heterochromatic block (Yql2) generates testis-specific chimeric *CDC2L2* 433
 Zeenath Jehan, Sambandam Vallinayagam, Shrish Tiwari, Suman Pradhan, Lalji Singh, Amritha Suresh, Hemakumar M. Reddy, Y.R. Ahuja, and Rachel A. Jesudasan

The origin and evolution of human ampliconic gene families and ampliconic structure 441
 Bejon Kumar Bhowmick, Yoko Satta, and Naoyuki Takahata

AT-rich repeats associated with chromosome 22q11.2 rearrangement disorders shape human genome architecture on Yql2 451
 Melanie Babcock, Svetlana Yatsenko, Paweł Stankiewicz, James R. Lupski, and Bernice E. Morrow

Molecular cloning of a translocation breakpoint hotspot in 22q11 461
 Hiroki Kurahashi, Hidehito Inagaki, Eriko Hosoba, Takema Kato, Tamae Ohye, Hiroshi Kogo, and Beverly S. Emanuel


A palindrome-driven complex rearrangement of 22q11.2 and 8q24.1 elucidated using novel technologies 470
 Anthony L. Gotter, Manjunath A. Nimmakayalu, G. Reza Jalali, April M. Hacker, Jacob Vorstman, Danielle Conforto Duffy, Liviya Medne, and Beverly S. Emanuel

Low copy repeats mediate distal chromosome 22q11.2 deletions: Sequence analysis predicts breakpoint mechanisms 482
 Tamim H. Shaikh, Ronald J. O'Connor, Ella Pierpont, James McGrath, April M. Hacker, Manjunath Nimmakayalu, Elizabeth Geiger, Beverly S. Emanuel, and Sulagna C. Saitta

(continued)

	Computational and experimental approaches double the number of known introns in the pathogenic yeast <i>Candida albicans</i>	492
	Quinn M. Mitrovich, Brian B. Tuch, Christine Guthrie, and Alexander D. Johnson	
Methods	Methods and Resources	
	Genome-wide identification of spliced introns using a tiling microarray	503 ^{OA}
	Zhihong Zhang, Jay R. Hesselberth, and Stanley Fields	
	Evaluation of predicted network modules in yeast metabolism using NMR-based metabolite profiling	510 ^{OA}
	Jacob G. Bundy, Balázs Papp, Rebecca Harmston, Roy A. Browne, Edward M. Clayson, Nicola Burton, Richard J. Reece, Stephen G. Oliver, and Kevin M. Brindle	
	Recent human effective population size estimated from linkage disequilibrium	520
	Albert Tenesa, Pau Navarro, Ben J. Hayes, David L. Duffy, Geraldine M. Clarke, Mike E. Goddard, and Peter M. Visscher	
Resources	Inferring genome-wide functional linkages in <i>E. coli</i> by combining improved genome context methods: Comparison with high-throughput experimental data	527 ^{OA}
	Sailu Yellaboina, Kshama Goyal, and Shekhar C. Mande	
	Approaching a complete repository of sequence-verified protein-encoding clones for <i>Saccharomyces cerevisiae</i>	536
	Yanhui Hu, Andreas Rolfs, Bhupinder Bhullar, Tellamraju V.S. Murthy, Cong Zhu, Michael F. Berger, Anamaria A. Camargo, Fontina Kelley, Seamus McCarron, Daniel Jepson, Aaron Richardson, Jacob Raphael, Donna Moreira, Elena Taycher, Dongmei Zuo, Stephanie Mohr, Michael F. Kane, Janice Williamson, Andrew Simpson, Martha L. Bulyk, Edward Harlow, Gerald Marsischky, Richard D. Kolodner, and Joshua LaBaer	

^{OA}Open Access paper.

Cover A schematic depiction of low copy repeats (LCRs) that mediate genomic instability on chromosome 22 (purple, on the *left*). It has been demonstrated by several groups, including papers in this issue, that palindromic AT rich repeats in 22q11, which could form hairpins and cruciforms (*middle*), mediate translocations between chromosome 22 and other partner chromosomes. Here, the 22q11 region is enlarged and represented by multicolored boxes showing the complex modular LCRs that characterize this chromosome. The BCRL module is depicted by a blue and white striped motif. Zigzag lines represent the location of multiple breakpoints including those for deletions seen in DiGeorge/Velocardiofacial syndrome (DGS/VCFS) patients, duplications seen in Cat Eye syndrome, and the inversion, the translocations, and the deletions involving 22q reported in this issue. Transparent and white overlapping planes show the location of the prevalent LCR-mediated 22q deletions seen in DGS/VCFS and the newer distal deletions reported in this issue, respectively. In the background, a FISH photograph shows the two homologs of chromosome 22 in a patient with a 22q11 deletion. The normal 22 has both the green and red signals, whereas the green signal is lost due to the deletion on the other homolog. (Cover illustration by Connie Funkhouser Balek, Precision Graphics, www.precisiongraphics.com, with concept and design contributions from Tamim H. Shaikh, Ph.D. [For details, see Shaikh et al., pp. 482–491; Gotter et al., pp. 470–481; Kurahashi et al., pp. 461–469; and Babcock et al., pp. 451–460.]