

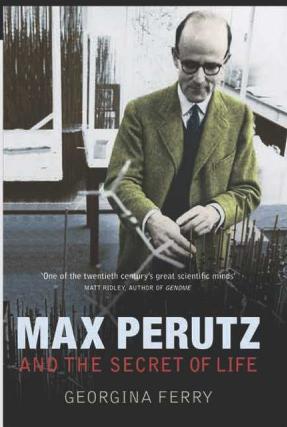
Make Illumina part of **your** DNA.

The most comprehensive set of DNA analysis tools available.

Illumina's portfolio of DNA analysis products delivers industry-leading data quality at the lowest cost per study. Accelerate discovery by looking at DNA from every angle.

- ▶ **SNP genotyping** — Achieve significance with the industry's best genomic coverage and data quality.
- ▶ **CNV analysis** — Obtain the most comprehensive access to known and novel CNV regions.
- ▶ **DNA sequencing** — Sequence virtually anything at a fraction of the cost and time.
- ▶ **DNA methylation** — Get single CpG site resolution with high-multiplex standard or custom methylation panels.
- ▶ **ChIP-Seq** — Obtain genome-wide maps of DNA-protein interactions with unprecedented resolution, quality and cost.

Make us part of your DNA. Join the growing Illumina Community.


Find out how to make
Illumina part of your DNA:

www.illumina.com/DNA

MAX PERUTZ

AND THE SECRET OF LIFE

"In science, truth always wins."
—Max Perutz

By Georgina Ferry

Few scientists have thought more deeply about the nature of their calling and its impact on humanity than Max Perutz (1914-2002). Born in Vienna, Jewish by descent, lapsed Catholic by religion, he came to Cambridge in 1936, to join the lab of the legendary Communist thinker J.D. Bernal. There he began to explore the structures of the molecules that hold the secret of life. In 1940, he was interned and deported to Canada as an enemy alien, only to be brought back and set to work on a bizarre top secret war project. In 1947, he founded the small research group in which Francis Crick and James Watson discovered the structure of DNA: under his leadership it grew to become the world-famous Laboratory for Molecular Biology. Max himself explored the protein hemoglobin and his work, which won him a Nobel Prize in 1962, launched a new era of medicine, heralding today's astonishing advances in the genetic basis of disease.

Max Perutz's story, wonderfully told by Georgina Ferry, brims with life. It has the zest of an adventure novel and is full of extraordinary characters. Max was demanding, passionate and driven but also humorous, compassionate and loving. Small in stature, he became a fearless mountain climber; drawing on his own experience as a refugee, he argued fearlessly for human rights; he could be ruthless but had a talent for friendship. An articulate and engaging advocate of science, he found new problems to engage his imagination until weeks before he died aged 88.

About the author: Georgina Ferry is a former staff editor on *New Scientist*, and contributor to BBC Radio 4's *Science Now*. Her books include the acclaimed biography *Dorothy Hodgkin: A Life* (1998); *The Common Thread* (2002, with Sir John Sulston) and *A Computer Called LEO* (2003). She lives in Oxford.

2007, 352 pp., illus., glossary, index

Hardcover \$39

ISBN 978-087969785-3

CONTENTS

List of illustrations	5 Mountains and Mahomet	11 Health and disease
Preface and acknowledgements	6 How hemoglobin was not solved	12 Truth always wins
1 Scenes from a Vienna childhood	7 Annus mirabilis	Select bibliography
2 'It was Cambridge that made me'	8 In search of solutions	Notes
3 'The most dangerous characters of all'	9 A structure for science – the LMB	Glossary
4 Home and homeland	10 The breathing molecule	Index

www.cshlpress.com

To order or request additional information, please visit our Web site or:

Call: 1-800-843-4388 (Continental US and Canada) 516-422-4100 (All other locations)

FAX: 516-422-4097 E-mail: cshlpress@cshl.edu

Write: Cold Spring Harbor Laboratory Press, 500 Sunnyside Blvd., Woodbury, NY 11797-2924

CopyControl™ Genomic Cloning. . .

The stability of single-copy vectors AND the DNA yields of high-copy clones

Have your cake and eat it too!

CopyControl™ BAC Cloning Kits contain all the molecular biology reagents needed for constructing high-quality, large-insert BAC libraries - *fast and easy*.

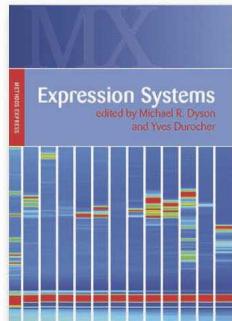
- **Better Cloning Efficiency**—Pre-cut, linearized vectors provide maximum cloning efficiency with very few empty clones.
- **Shorter Construction Time**—The fast ligation and size-screening components in the kits shorten the construction process by at least 3 days.
- **Higher DNA Yields**—The CopyControl™ feature allows yields of up to 5 µg per ml of culture when using the new Autoinduction protocol.

Fingerprints of zero generation (O), one hundred generation (H) and induced (I) CopyControl™ BACs. The consistent banding patterns displayed by the BACs indicate excellent clone stability, even after the multi-copy CopyControl origin is induced. Equal amounts of BAC DNA were loaded into each lane.

EPICENTRE offers a full line of genomic library products. Check them out!
Simply go to www.EpiBio.com and enter QuickInfo code: **CBAX3**

 EPICENTRE®
Biotechnologies

Now available from Scion Publishing


Expression Systems

By Michael Dyson, *The Wellcome Trust Sanger Institute, Cambridge, UK* and
Yves Durocher, *Biotechnology Research Institute, Quebec, Canada*

Protein expression is an increasingly important tool for research on gene function. What is needed is not just a lab manual providing established methods as well as the latest state-of-the-art protocols, but also clear advice on what expression system to choose when.

Expression Systems: Methods Express uniquely fills this need. It covers expression across a broad range of systems, including the following:

- Baculovirus expression vectors
- CHO cells
- *E. coli*
- HEK293-EBNA1 cells
- *Lactococcus lactis*
- *S. cerevisiae*
- transfected insect cells
- *Pichia pastoris*
- mammalian cells using BacMam viruses
- lentiviral vectors
- wheat germ cell-free system

The book takes the reader through how to make an informed choice of appropriate system, taking into account the protein target, the time involved, the ultimate use of the expressed protein, and the laboratory equipment required. It also provides step-by-step methods for each system. In addition, the book describes the optimisation of expression strategies, expression engineering using ribosome display, and how to select protein variants with improved expression.

Every chapter discusses the merits and limitations of the approaches available, describes the key techniques in full practical detail, and provides sensible advice for immediate use at the bench.

In summary, *Expression Systems: Methods Express* is a comprehensive laboratory manual and information resource for researchers at all levels, from postgraduate student to principal investigator.

October 2007, 286 pp., full-color section

Paperback: \$75.00

Hardcover: \$125.00

ISBN 978-1-904842-439

ISBN 978-1-904842-453

CONTENTS

1. Expression strategy
Michael Dyson, *The Wellcome Trust Sanger Institute, Cambridge, UK*
2. Protein expression in *Escherichia coli*
Rosalind Kim, *Lawrence Berkeley National Laboratory, Berkeley, California, USA*
3. Expression engineering of synthetic antibodies using ribosome display
Matthew P. DeLisa and Lydia M. Contreras Martinez, *both at Cornell University, New York, USA*
4. Refolding proteins from inclusion bodies
Renaud Vincentelli, *AFMB-UMR, Marseille, France*
5. Selection of protein variants with improved expression using GFP-derived folding and solubility reporters
Geoffrey Waldo and Stephanie Cabantous, *Los Alamos National Laboratory, New Mexico, USA*
6. Protein expression in the wheat germ cell-free system
Yaeta Endo and Tatsuya Sawasaki, *both at Ehime University, Matsuyama, Japan*
7. *Saccharomyces cerevisiae*; A microbial eukaryotic expression system
Christine Lang, *Technische Universität Berlin, Berlin, Germany*
8. Expression of proteins in *Pichia pastoris*
Geoff and Joan Lin-Cereghino and Wilson Leung, *all from University of the Pacific, California, USA*
9. Improved baculovirus expression vectors
Linda King, Richard Hitchman, *both at Oxford Brookes University, Oxford, UK* and Robert Possee, *CEH, Oxford, UK*
10. Transient transfection of insect cells for rapid expression screening and protein production
Robert Novy, *EMD Biosciences, Inc., Wisconsin, USA, et al.*
11. Generation of stable CHO cell lines for protein expression
Zhijian Lu, *Wyeth Research, Massachusetts, USA, et al.*
12. Transient expression in HEK293-EBNA1 cells
Yves Durocher, Roseanne Tom and Louis Bisson, *all at Biotechnology Research Institute, Quebec, Canada*
13. Nisin- and subtilin-controlled gene expression systems for Gram-positive bacteria
Oscar Kuipers, and Jan Kok, *both at University of Groningen, The Netherlands*
14. Protein expression using lentiviral vectors
Bernard Massie, Renald Gilbert and Sophie Broussau, *all at Biotechnology Research Institute, Quebec, Canada*
15. Expression in mammalian cells using BacMam viruses
Yu-Chen Hu and Hsiao-Ping Lee, *both at National Tsing Hua University, Hsinchu, Taiwan.*

List of suppliers
Index

www.scionpublishing.com

To order or request additional information:

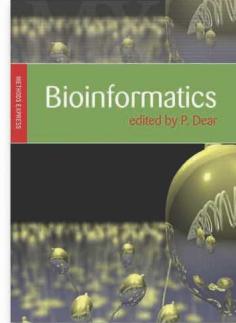
Call: 1-866-854-3301 (Continental US and Canada) Fax: 516-422-4097
Email: USorders@scionpublishing.com WWW Site: www.scionpublishing.com
Write: Scion Publishing Ltd., 500 Sunnyside Blvd., Woodbury, NY 11797-2924

Now available from Scion Publishing

Bioinformatics

Edited by Paul Dear, *MRC Laboratory of Molecular Biology, Cambridge, UK*

Bioinformatics: Methods Express is a book on bioinformatics that makes sense to non-bioinformaticians. The book provides the clear advice and explicit protocols that non-bioinformaticians need in order to understand what to do and how to avoid common pitfalls. Each chapter guides you through the major databases and tools with worked examples—all accompanied by sample data files available online. Topics covered include: data access, sequence searches and alignments, identification and annotation of features, the transcriptome, protein structure and function, comparisons and phylogeny.


Bioinformatics: Methods Express is a comprehensive manual for all wet-bench scientists who need to use bioinformatics—from postgraduate student to principal investigator.

www.scionpublishing.com/bioinformatics contains comprehensive datasets which allow the reader to practice techniques described in the book.

October 2007, 294 pp., Appendix, Index

Paperback: \$75.00

Hardcover: \$125.00

ISBN 978-1-904842-163

ISBN 978-1-904842-231

CONTENTS

1. Database resources for wet-bench scientists
Neil Hall and Lynn Schriml, *The Institute for Genomic Research, Rockville, MD, USA*
2. Navigating sequenced genomes
Melody Clark and Thomas Schlitt, *British Antarctic Survey, Natural Environment Research Council, Cambridge, UK*
3. Sequence similarity searches
Jaap Heringa and Walter Pirovano, *Centre for Integrative Bioinformatics, Vrije Universiteit, Amsterdam, The Netherlands*
4. Gene prediction
Marie-Adele Rajandream, *Wellcome Trust Sanger Institute, Cambridge, UK*
5. Prediction of non coding transcripts
Alex Bateman and Sam Griffiths-Jones, *Wellcome Trust Sanger Institute, Cambridge, UK*
6. Finding regulatory elements in DNA sequence
Debraj Guha Thakurta, *Rosetta Inpharmatics LLC, Merck & Co. Research Genetics Dept., Seattle, WA, USA*; and Gary Stormo, *Washington University School of Medicine, St. Louis, MO, USA*
7. Expressed sequence tags
Arthur Gruber, *Institute of Biomedical Sciences, University of São Paulo, Brazil*

8. Protein structure, classification, and prediction
Arthur Lesk, *Pennsylvania State University, University Park, PA, USA*

9. Gene ontology
Vineet Sangar, *Pennsylvania State University, University Park, PA, USA*

10. Prediction of protein function
Rodrigo Lopez, *EMBL Outstation Hinxton, European Bioinformatics Institute, Cambridge, UK*

11. Multiple sequence alignment
Burkhard Morgenstern, *Universität Göttingen, Institut für Mikrobiologie und Genetik, Göttingen, Germany*

12. Inferring phylogenetic relationships from sequence data
Peter Foster, *The Natural History Museum, London, UK*

Appendix

Index

Methods Express

- protocols in step-by-step detail
- comprehensive troubleshooting
- example data as benchmarks
- key references to further reading

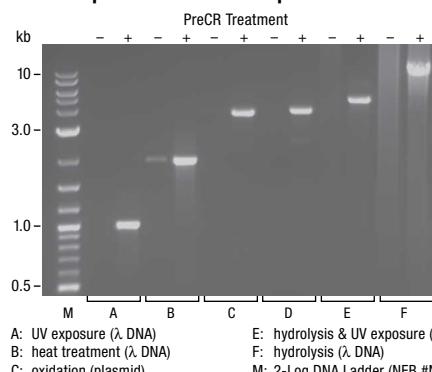
Series Editor: B. David Hames, *University of Leeds*

www.scionpublishing.com

To order or request additional information:

Call: 1-866-854-3301 (Continental US and Canada) Fax: 516-422-4097
 Email: USorders@scionpublishing.com WWW Site: www.scionpublishing.com
 Write: Scion Publishing Ltd., 500 Sunnyside Blvd., Woodbury, NY 11797-2924

lose the damage, keep the genes.


PreCR™ Repair Mix from New England Biolabs

REPAIR A BROAD RANGE OF DNA DAMAGE PRIOR TO PCR

Increase your chances for successful PCR with the PreCR™ Repair Mix. This innovative blend of recombinant proteins is designed to repair damaged DNA prior to its use in PCR reactions. All it takes is a simple 20 minute reaction to repair a wide range of DNA damage due to heat, low pH, oxygen, and UV light.*

*Not recommended for highly fragmented DNA or for damage due to DNA crosslinks

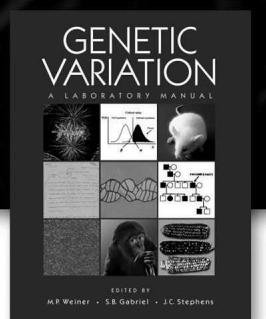
Proven Repair with the PreCR Repair Mix

Advantages:

- Suitable for PCR, microarrays and other DNA technologies
- Does not harm DNA template
- Can be used in conjunction with any thermophilic polymerase
- PCR can be done directly on repair reaction
- Easy-to-use protocols included

Product information:

PreCR™ Repair Mix M0309S/L


DNA Damage	Cause	Repaired by PreCR Repair Mix
abasic sites	hydrolysis	✓
nicks	hydrolysis nucleases shearing	✓
thymidine dimers	UV radiation	✓
blocked 3'-ends	multiple	✓
oxidized guanine	oxidation	✓
oxidized pyrimidines	oxidation	✓
deaminated cytosine	hydrolysis	✓
fragmentation	hydrolysis nucleases shearing	X
Protein-DNA crosslinks	formaldehyde	X

For more information and our international distribution network, please visit WWW.neb.com

GENETIC VARIATION

A Laboratory Manual

Edited by Michael P. Weiner, *RainDance Technologies, Inc., Guilford, Connecticut*,
Stacey B. Gabriel, *The Broad Institute, Massachusetts Institute of Technology, Cambridge*,
and J. Claiborne Stephens, *Motif BioSciences, New York*

Genetic Variation: A Laboratory Manual is the first compendium of protocols specifically geared towards genetic variation studies, and includes thorough discussions on their applications for human and model organism studies. Intended for graduate students and professional scientists in clinical and research settings, it covers the complete spectrum of genetic variation—from SNPs and microsatellites to more complex DNA alterations, including copy number variation. Written and edited by leading scientists in the field, the early sections of the manual are devoted to study design and generating genotype data, the use of resources such as HapMap and dbSNP, as well as experimental, statistical, and bioinformatic approaches for analyzing the data. The final sections include descriptions of genetic variation in model organisms and discussions of recent insights into human genetic ancestry, forensics, and human variation.

2007, 793 pp., illus., appendix, index

Hardcover \$240

Paperback \$165

ISBN 978-087969779-2

ISBN 978-087969780-8

CONTENTS

1. Ethical Issues in Human Genetic Research: The Global Experience, *K. Arnold and J. van der Walt*

SECTION 1: STUDY DESIGN

Introduction

2. Population Choice as a Consideration for Genetic Analysis Study Design, *J.C. Stephens and M. Bamshad*

3. Power Calculations, *D.M. Evans and S. Purcell*

4. Genetic Analysis: Moving between Linkage and Association, *A.V. Smith*

5. NCBI dbSNP Database: Content and Searching, *M.L. Feolo and S.T. Sherry*

6. Using the HapMap Web Site, *A.V. Smith*

SECTION 2: LABORATORY PROTOCOLS

Introduction

PART 1: PREPARATION OF DNA AND RNA

7. Isolation of Plant DNA for Genotyping Analysis, *N.M. Springer*

8. Preparing RNA from Plant Tissues, *A.-P. Hsia, H.D. Chen, K. Ohtsu, and P.S. Schnable*

9. Preparing DNA from Mammalian Sources, *A. Sahota, A.I. Brooks, and J.A. Tischfield*

PART 2: SNP VARIATION ANALYSIS

10. Intermediate-Throughput Laboratory-Scale Genotyping Solutions, *S.J. Macdonald*

11. Intermediate-Throughput Laboratory-Scale Genotyping Protocols, *E. Cuppen, S.J. Macdonald, C. Ha, P.-Y. Kwok, W.B. Barbazuk, A.-P. Hsia, H.D. Chen, Y. Fu, K. Ohtsu, and P.S. Schnable*

12. Molecular Inversion Probes and Universal Tag Arrays: Application to Highplex Targeted SNP Genotyping, *G. Karlin-Neumann, M. Sedova, R. Sapolosky, J. Forman, Y. Wang, M. Moorhead, and M. Faham*

13. Whole-Genome Genotyping, *S.B. Gabriel and M.P. Weiner*

PART 3: COPY NUMBER AND COMPLEX VARIATION ANALYSIS

14. Comparative Genomic Hybridization to Detect Variation in the Copy Number of Large DNA Segments, *I.N. Holcomb and B.J. Trask*

15. Representational Oligonucleotide Microarray Analysis Detection of Genetic Variation, *R. Lucito*

16. Whole-Genome Sampling Analysis to Detect Copy Number Changes in FFPE Samples, *S. Jacobs*

17. Molecular Inversion Probe Targeted Genotyping: Application to Copy Number Determination, *G. Karlin-Neumann, M. Sedova, R. Sapolosky, S. Lin, Y. Wang, M. Moorhead, and M. Faham*

18. Microsatellite Markers for Linkage and Association Studies, *J. Gulcher*

SECTION 3: DATA ANALYSIS

Introduction

19. Considerations for SNP Selection, *C. Carlson*

20. Selection and Evaluation of tag-SNPs Using Tagger and HapMap, *P. de Bakker*

21. Haplovie: Visualization and Analysis of SNP Genotype Data, *J.C. Barrett*

22. Considerations for Copy Number Analysis of FFPE Samples, *S. Jacobs*

23. Assessing Significance in Genetic Association Studies, *M.J. Daly*

24. Assessing Human Variation Data for Signatures of Natural Selection, *M. Bamshad and J.C. Stephens*

SECTION 4: VARIATION STUDIES IN MODEL ORGANISMS

Introduction

25. *Arabidopsis*, *Y. Li and J.O. Borevitz*

26. Maize, *W.B. Barbazuk, A.-P. Hsia, H.D. Chen, Y. Fu, K. Ohtsu, and P.S. Schnable*

27. Rice, *H. Leung, K.L. McNally, and D. Mackill*

28. The Mouse, *C.M. Wade and M.J. Daly*

29. The Rat, *E. Cuppen, N. Hübner, H.J. Jacob, and A.E. Kwiek*

30. The Cat, *M.J. Lipinski, N. Billings, L.A. Lyons*

31. The Dog, *K. Lindblad-Toh and E.A. Ostrander*

32. The Chimpanzee, *T.S. Mikkelsen, M.C. Zody, and K. Lindblad-Toh*

SECTION 5: INSIGHTS INTO HUMAN VARIATION

Introduction

33. Genealogical Markers: mtDNA and the Y Chromosome, *M. Stoneking and M. Kayser*

34. Forensic DNA Testing, *J.M. Butler*

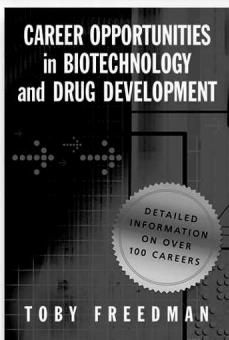
35. The Human Genome: What Lies Ahead, *M.P. Weiner and J.C. Stephens*

APPENDIX: Cautions

INDEX

www.cshlpress.com

To order or request additional information:


Call: 1-800-843-4388 (Continental US and Canada) 516-422-4100 (All other locations)

FAX: 516-422-4097 E-mail: cshpress@cshl.edu

Write: Cold Spring Harbor Laboratory Press, 500 Sunnyside Blvd., Woodbury, NY 11797-2924

Career Opportunities in Biotechnology and Drug Development

By Toby Freedman, *Synapsis Search, Portola Valley, California*

As the world of biotechnology has grown in leaps and bounds, so too have the career opportunities. But the choices can be daunting. What types of jobs are available? How do you get your foot in the door? What will your job entail if you become a "Preclinical Project Manager" or a "Process Scientist"? What's the difference between biotech and pharma?

Career Opportunities in Biotechnology and Drug Development provides a comprehensive and systematic overview of careers in the life science industry, with all their ups and downs. The author, Toby Freedman, Ph.D., has conducted interviews with hundreds of key players in the industry, who provide first-hand explanations of their day-to-day roles and responsibilities, and offer key insights into how they landed those jobs in the first place. Careers in everything from discovery research to venture capital are covered in detail.

Each chapter includes valuable sections on preparing yourself for a prospective career: educational requirements and personality characteristics needed; recommendations of books, magazines, and Web site resources; and issues to consider regarding salary and compensation. The book also includes interviewing and job searching tips, as well as suggestions on writing a resume specifically for industry.

Career Opportunities in Biotechnology and Drug Development is an essential guide for science graduates and medical, business, legal, high-tech or engineering professionals. With discussions of job security, future trends, and potential career paths, even those already working in industry will find helpful information on how to take advantage of opportunities available within their own companies and elsewhere. This book will help you make wiser and more informed decisions about what role you would like to play in the biotechnology and drug development industry.

2008, 409 pp., illus., index

Hardcover \$59.00

ISBN 978-087969725-9

CONTENTS

PART I: INDUSTRY OVERVIEW: LANDING A JOB IN INDUSTRY

1. The Pros and Cons of Working in Industry: Why Make the Transition?
2. How to Excel in Industry: What to Expect and What is Expected of You
3. So You Want a Job in Biotechnology and Drug Development....: Finding Your Way In
4. The Biotechnology Industry Resume: Putting Your Best Foot Forward
5. The Informational Interview: Researching Your Options
6. The Biotechnology and Drug Development Industry: An Overview

PART II: CAREER OPPORTUNITIES IN BIOTECHNOLOGY AND DRUG DEVELOPMENT COMPANIES

7. Discovery Research: The Idea Makers
8. Preclinical Research: The Bridge between Discovery Research and Clinical Development

9. Project Management: The Product Development "Orchestra Conductors"
10. Clinical Development: Developing New Products to Benefit Human Health
11. Medical Affairs: Working in the Post-Approval World
12. Regulatory Affairs: The Final Challenge—Passing the FDA Test
13. Quality: Consistently Making Good Products
14. Operations: Ensuring that Processes Run Smoothly and Efficiently
15. Bio/Pharmaceutical Product Development: The Chemistry Has to Be Good
16. Life Science Information Management: The Melding of Computer and Biological Sciences
17. Business and Corporate Development: Why Big Deals Really Are a Big Deal
18. Marketing: Communicating a Message to Customers
19. Sales: Generating Revenue and Educating Customers
20. Technical Applications and Support: Getting Paid to Be the Expert
21. Corporate Communications: Communication between External and Internal Worlds
22. Executive Leadership and Entrepreneurship: The Business Builders
23. Law: Providing Legal Advice and Protecting Property
24. Health Care Finance: Venture Capital, Institutional Investing, Investment Banking, and Equity Research
25. Management Consulting: The Strategy Advisors
26. Recruiting: The Business of Matchmaking

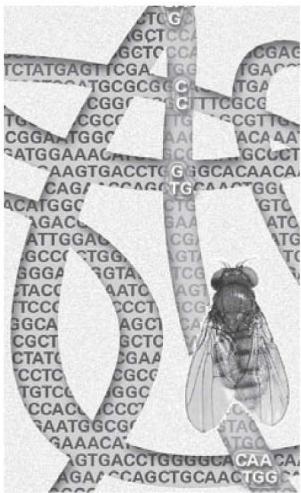
Index

www.cshlpress.com

To order or request additional information, please visit our Web site or:

Call: 1-800-843-4388 (Continental US and Canada) 516-422-4100 (All other locations)

FAX: 516-422-4097 E-mail: cshlpress@cshl.edu


Write: Cold Spring Harbor Laboratory Press, 500 Sunnyside Blvd., Woodbury, NY 11797-2924

CAREER TRACKS

Dedicated entirely to Employment, Conferences, Meetings, Fellowships, and Grants

DROSOPHILA COMPARATIVE GENOMICS – CONGRATULATIONS!

Congratulations to Alex Stark, Mike Lin, Pouya Kheradpour, and Matt Rasmussen, for their five papers on protein-coding genes, microRNAs, regulatory networks, and phylogenomics, all in this issue of *Genome Research*!

Congratulations and thanks to all our collaborators at MIT, the Broad Institute, the Computer Science and Artificial Intelligence Lab, the Whitehead Institute, Harvard University, FlyBase, the Berkeley Drosophila Genome Project, Cold Spring Harbor Lab, and across the larger *Drosophila* research community. This was a fantastic team with much to be proud of!

The two *Nature* papers on Nov. 8, and the many papers in *Genome Research* this month are reason for celebration, and something we will always remember!

With best wishes to all,

Manolis Kellis
MIT Computational Biology Group

POSTDOCTORAL POSITIONS AVAILABLE MIT Computational Biology Group compbio.mit.edu

The MIT Computational Biology Group is seeking highly motivated researchers to undertake several exciting new projects in the fields of Genomics and Gene Regulation. We are seeking applicants with strong background in computer science and computational biology, who are interested in working in an interdisciplinary and highly collaborative environment at the interface of Computer Science and Biology.

HUMAN EPIGENOME (ENCODE)

We are interested in the sequence determinants of chromatin state in animal genomes. Project involves computational analysis of large-scale ChIP-seq datasets (Chromatin Immunoprecipitation followed by Solexa/Illumina sequencing) to identify DNA elements associated with changes in chromatin state across different cell types and during cell differentiation. Background in epigenetics is highly encouraged. Applicant will interact with Manolis Kellis, Brad Bernstein, Eric Lander, and other members of our ENCODE team at the Broad Institute and CSAIL.

DROSOPHILA REGULATORY NETWORKS (modENCODE)

We are interested in understanding the regulatory code of *Drosophila melanogaster*, and in determining the *in vivo* sequence specificity of all transcriptional regulators, and all chromatin remodeling factors. Project involves computational analysis of large-scale ChIP-chip datasets for hundreds of regulators across dozens of cell types and developmental stages in *Drosophila*, use of comparative genomics to discover regulatory motifs, their grammatical constructs, and the regulatory regions they define. Background in gene regulation and *Drosophila* biology highly encouraged. Applicant will interact with Manolis Kellis, Kevin White, Bing Ren, and other members of our modENCODE team.

MAMMALIAN COMPARATIVE GENOMICS

We are comparing 32 recently sequenced mammalian genomes, and using large-scale experimental datasets, to systematically discover and characterize the functional elements in the human genome. These include protein-coding genes, RNA genes and structures, microRNAs and other regulatory small RNAs, enhancers, silencers, insulators, boundary elements, regulatory motifs, and *cis*-regulatory modules. Project will involve analysis of genome alignments, evaluation of selective constraints and patterns of divergence, lineage-specific selection, correlation with functional datasets. Applicants will interact with Manolis Kellis and all members of the MIT Computational Biology group.

Massachusetts
Institute of
Technology

Computer
Science and
Artificial
Intelligence Lab

CSAIL

**Chair, Department of Biostatistics and Computational Biology
Dana-Farber Cancer Institute
And
Professor of Biostatistics
Harvard School of Public Health**

The Dana-Farber Cancer Institute (DFCI) and the Harvard School of Public Health (HSPH) are seeking a distinguished statistical scientist to serve as chair of the Department of Biostatistics and Computational Biology at DFCI. The successful candidate will also be appointed as a tenured professor in the Department of Biostatistics at the Harvard School of Public Health and will provide leadership in the cancer training and research program in the department.

The Department of Biostatistics and Computational Biology at the DFCI is an active department of sixteen faculty, twelve doctoral research scientists, and fifteen masters-level statisticians conducting wide-ranging methodological research in biostatistics and computational biology and collaborative research in cancer. The department is closely affiliated with the Department of Biostatistics at HSPH, where most DFCI faculty hold joint appointments and participate in the graduate training program.

The successful candidate will be a visionary leader, internationally recognized as a pre-eminent statistical scientist with an established record of scholarship, ideally in the area of cancer research. Candidates should hold a doctoral degree in a relevant field.

For more information on the position and application procedure, please see:
<http://www.hsppharvard.edu/faculty/searches/biostatistics/>

Harvard University is committed to increasing the representation of women and minorities among its faculty and particularly encourages applications from such candidates.

**COLUMBIA UNIVERSITY
Department of Biological Sciences
STAFF ASSOCIATE**

A full-time Staff Associate position is available on 2/1/08 to study regulatory networks, how these networks vary across individuals, and how they are dysfunctional in cancer. The successful candidate must have a BSc in Computer Science, at least four years' programming experience in Java or C++, and knowledge of either machine learning or computational biology algorithms. Salary commensurate with experience.

Closing date for applications is 1/1/08. Apply in writing with curriculum vitae and cover letter, giving the names and addresses of three references to:

**John Lacqua
Department of Biological Sciences
Columbia University
500 Fairchild Center, MC 2401
1212 Amsterdam Avenue
New York, NY 10027**

Columbia University is an equal opportunity/affirmative action employer. Minorities and women are encouraged to apply.

**Assistant/Associate Professor of Bioinformatics/Computational
Biology Department of Biostatistics
Harvard School of Public Health**

The Department of Biostatistics at Harvard School of Public Health (HSPH), is seeking an outstanding candidate for a tenure-track faculty position in Bioinformatics/Computational Biology at the level of Assistant or Associate Professor. The successful candidate would join an active group at HSPH developing novel computational and statistical methods, and conduct collaborative research with clinical and basic scientists at Harvard University and its affiliated medical centers. She/he is expected to play a vital leadership role in expanding the quantitative science research and educational programs at HSPH in bioinformatics and computational biology and its related fields. Candidates should have doctoral degree and a demonstrated record of achievement; candidates in all areas of computational biology, bioinformatics and statistical science are encouraged to apply. Please send a letter of application, including a statement of current and future research interests, a curriculum vitae, sample publications, and the names of three referees to the address below. Applicants should ask their three referees to write independently to this address.

Computational Biology Junior Faculty Search Committee
Department of Biostatistics
Harvard School of Public Health
655 Huntington Avenue, 4th Floor
Boston, MA 02115

Harvard School of Public Health is strongly committed to increasing the representation of women and minority members among its faculty and particularly encourages applications from such candidates.