Bringing genomic data into focus for studying complex diseases in specific biological contexts

Arjun Krishnan1,, Ran Zhang2,, Victoria Yao3,, Chandra Theesfeld1,, Aaron Wong4,, Alicja Tadych1,, Natalia Volfovsky4,, Alan Packer4,, Alex Lash#,4,, Olga Troyanskaya#,1,3,4

1Lewis-Sigler Inst. for Integrative Genomics, 2Dept. of Molecular Biology, 3Dept. of Computer Science, Princeton University; 4Simons Center for Data Analysis, Simons Foundation

Overview

Tissue-specific networks are powerful tools for studying complex diseases like autism spectrum disorder (ASD).

We present the first \textbf{genome-wide prediction of autism-associated genes} in the context of the human brain-specific gene network.

The genome-wide predictions, associated brain developmental signatures, functional modules, and prioritized copy-number-variants (CNVs) are all available at asd.princeton.edu.

Studying autism genetics in the context of the human brain

1. Evidence-weighted gold-standard
2. Brain-specific functional gene interaction network
3. Network-based evidence-weighted disease-gene classifier
4. Genotype-wide autism gene prediction
5. Genetic, Developmental, Functional insights

Spatiotemporal developmental expression of autism genes
Brain-specific network-based autism functional modules
Autism CNV gene prioritization and functional characterization

Our ASD-gene predictions are based on a machine learning approach that (1) uses a gold-standard of known disease genes – those linked to autism with varying levels of evidence (E1-4) as positives, and other genes linked to non-neuronal diseases as negatives – in the context of a (2) human brain-specific functional interaction network to (3) build an evidence-weighted network-based classifier capturing autism-specific gene interaction patterns, and (4) predict the level of autism-association of all the genes in the genome. A number of subsequent analyses (5) demonstrate the accuracy and utility of our genome-wide complement of autism-associated genes.