Fig. S1. Biological reagents used in this study

A

ADH1-ZFN

ATCTTCGGCCATGAA
GCTGGAGGG
TAGAAGCCG
GTACTTCGACCTCCC

B

ADH1-ZFN-4

Col (WT)

75 kD

37 kD

(Anti-FLAG)

C

ADH1-ZFN-4

At1g61590
At1g61600

Chr 1

(227261072)

D

At5g61460

SALK_124719 (smc6b-3)

Smc6b-3
Col (WT)

Actin 2

(RT-PCR)

E

KU70
(At1g16970)

ADH1-ZFN-4

ADH1

Chrom. I

LIG4
(At5g57160)

SMC6b

(At5g61460)

Chrom. IV

F

ADH1-ZFN-4
Mutant (ku70, lig4, smc6b)

F1 (genotyping)

F2 (genotyping for double)

F3 (homozygous doubles used in this study)
Fig. S2. Enhanced mutagenesis mediated by the TT4-ZFN and MPK8-ZFN in the \textit{smc6b} background

TT4-ZFN (PCR and Nspl digestion)

<table>
<thead>
<tr>
<th></th>
<th>Col</th>
<th>smc6b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.31</td>
<td>8.15</td>
</tr>
<tr>
<td>2</td>
<td>1.27</td>
<td>6.95</td>
</tr>
<tr>
<td>3</td>
<td>2.63</td>
<td>8.02</td>
</tr>
<tr>
<td>4</td>
<td>2.39</td>
<td>7.12</td>
</tr>
</tbody>
</table>

Mutation %

<table>
<thead>
<tr>
<th></th>
<th>Col</th>
<th>smc6b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.15</td>
<td>21.00</td>
</tr>
<tr>
<td>2</td>
<td>7.56</td>
<td></td>
</tr>
</tbody>
</table>

MPK8-ZFN (PCR and MslI digestion)

<table>
<thead>
<tr>
<th></th>
<th>Col</th>
<th>smc6b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.71</td>
<td>25.67</td>
</tr>
<tr>
<td>2</td>
<td>7.89</td>
<td>17.84</td>
</tr>
<tr>
<td>3</td>
<td>10.87</td>
<td>16.41</td>
</tr>
<tr>
<td>4</td>
<td>14.36</td>
<td>24.03</td>
</tr>
</tbody>
</table>

Mutation %

<table>
<thead>
<tr>
<th></th>
<th>Col</th>
<th>smc6b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.21</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>21.00</td>
<td></td>
</tr>
</tbody>
</table>
Fig. S3. Gene targeting donor sequence

>ADH1_DONOR sequence (2380 bp)

CCCGTGTAACACGAGCAGCGCCTTTATCTAGTCAGCTTGTGATTCTAGCTGATCCTGAGCCCGAAGGTGAAGGAGCAGTGATCCTGACGACCCGAGGGGCCCTCGG
ATCC cacccgatgttattttctctcggaagctaaagtagagtaatcaatttattacactccaaatccataatacagtctttaaatctatttttttgaaggatttccacagg
acacaaaaaccggttttccagctatatcctctccCTCATAGTGAGTCTGTATTACAGATcTCggtaccactagctctcgaggctagcCTGGCCGTCGTTTTAC
aagggtaaatagaaacactaatcttctttgcttcgttttggatatttttaaggttttagagattcaaggtcgttttttttgttgttgtgtaggattgtgagagtgtgga
agagaggtaggtagcttttcagccaggagagatctCTTAGAGCCGCGTATACCCCGATTACGGAGTGACCCATACGCTTTGAGTTATCGAGATTTTCAGGAGCTAAG
TGCTGACCATTTAATCTACACTCCATCGAGGGAAGCTAAAAGCATTCAGGATATTTTAGGAGAAGATCCTGAGGGAAGGAGCTAACCGGTTTTTGCACAACATGGGGG
 unearth the complete sequence through these steps:

1. Identify the key elements of the sequence:
 - **ADH1_DONOR sequence**: 2380 bp
 - **CCCGTGTAACACGAGCAGCGCCTTTATCTAGTCAGCTTGTGATTCTAGCTGATCCTGAGCCCGAAGGTGAAGGAGCAGTGATCCTGACGACCCGAGGGGCCCTCGG

2. Examine the sequence for patterns or motifs:
 - The sequence contains multiple repetitions and variations, indicating its role in genetic targeting.

3. Highlight important sections:
 - The sequence begins with a CCPG motif, hinting at its potential role in targeting and integration.

4. Consider the implications of the sequence:
 - This sequence is likely used in genetic engineering contexts, possibly for constructing or modifying genes.

By following these steps, one can better understand the significance and application of the ADH1_DONOR sequence in research and genetic modification.
Fig. S4. MH-based deletions predominate in *ku70* and *lig4* in samples treated with both donor and estradiol

A. Length of deletions

B. Deletions using no or 1–6-bp putative MH

C. Detection of major large deletions

D. Distribution of 6 bp MH-based deletions
Fig. S5. NHEJ insertion profiles by length

A

Length of insertions (estradiol only)

B

Length of insertions (donor and estradiol)