

1

2 **Alternative splicing generates HER2 isoform diversity**

3 **underlying antibody-drug conjugate resistance in breast cancer**

4 Gabriela D. A. Guardia^{1,*}, Carlos H dos Anjos^{1,*}, Aline Rangel-Pozzo², Filipe F. dos
5 Santos^{1,3}, Alexander Birbrair⁴, Paula F. Asprino¹, Anamaria A. Camargo¹, Pedro A F
6 Galante^{1, #}

7 1 - Centro de Oncologia Molecular, Hospital Sírio Libanes, São Paulo, Brazil.

8 2 - Depart. of Physiology and Pathophysiology, CancerCare Manitoba Research
9 Institute, University of Manitoba, Winnipeg, Canada

10 3 - Depart. de Bioquímica, Universidade de São Paulo, Brazil.

11 4 - Depart. of Dermatology, University of Wisconsin-Madison, Madison, USA.

12 * co-first authors. # corresponding author: pgalante@mochsl.org.br

13

14 **ABSTRACT**

15 Breast cancer (BC) is a heterogeneous disease that can be molecularly classified based
16 on the expression of the ERBB2 receptor (also known as *HER2*) and hormone
17 receptors. Targeted therapies for HER2-positive BC, such as trastuzumab, antibody-
18 drug conjugates (ADCs) and tyrosine kinase inhibitors, have improved patient
19 outcomes but primary/acquired resistance still pose challenges that can limit
20 treatments' long-term efficacy. Addressing these obstacles is vital for enhancing
21 therapeutic strategies and patient care. Alternative splicing, a post-transcriptional
22 mechanism that enhances transcript diversity (isoforms), can produce proteins with
23 varied functions, cellular localizations, or binding properties. Here, we

24 comprehensively characterized the *HER2* alternative splicing isoforms, assessed their
25 expression in primary BC patients and cell lines, and explored their role in resistance
26 to anti-HER2 therapies. We expanded the catalog of known *HER2* protein-coding
27 isoforms from 13 to 90, revealing distinct patterns of protein domains, cellular
28 localizations, and protein structures, along with their antibody-binding sites. By
29 profiling expression in 561 primary BC samples and mass spectrometry data, we
30 discovered a complex landscape of *HER2* isoform, revealing novel transcripts that
31 were previously unrecognized and are not assessed in routine clinical practice. Finally,
32 the assessment of *HER2* isoform expression in BC cell cultures sensitive or resistant to
33 trastuzumab and ADCs revealed that drug-resistant cells shifted their expression
34 toward isoforms lacking antibody-binding domains. Our results broaden the
35 understanding of *HER2* isoforms, revealing distinct mechanisms of potential
36 resistance to anti-HER2 therapies, particularly ADCs. This expanded landscape of
37 *HER2* isoforms emphasizes the crucial role of alternative splicing investigations in
38 advancing precision-targeted cancer therapies.

39

40 **INTRODUCTION**

41

42 Breast cancer remains one of the most prevalent and challenging malignancies
43 worldwide, with an estimated 2.3 million new cases diagnosed in 2022 (Bray et al.
44 2024). The heterogeneity of breast cancer at both clinical and molecular levels has
45 compelled its classification into distinct groups, enabling more tailored treatment
46 approaches for improving patient outcomes (Perou et al. 2000). The molecular
47 classification of breast cancer, primarily based on the expression of hormone

48 receptors (estrogen and progesterone) and the human epidermal growth factor
49 receptor 2 (*ERBB2*, also known as *HER2*), has revolutionized our understanding of this
50 disease and guided the development of HER2 targeted therapies (Sørlie et al. 2001;
51 Prat et al. 2017).

52 HER2-positive breast cancers, accounting for approximately 20% of all breast
53 cancers, are characterized by the overexpression or amplification of the *HER2* gene
54 (Wolff et al. 2013). Located on Chromosome 17q12, the *HER2* transcripts typically
55 encode a 185 kDa transmembrane tyrosine kinase receptor that belongs to the
56 epidermal growth factor receptor (EGFR) family (Moasser 2007). Regarding
57 functionalities, *HER2* overexpression leads to the constitutive activation of
58 downstream signaling pathways, including the PIK3CA/AKT and MAPK, promoting
59 tumor cell proliferation and survival (Yarden and Sliwkowski 2001). The HER2-positive
60 breast cancer subtype is associated with aggressive tumor behavior and poor
61 prognosis in the absence of anti-HER2 targeted therapy (Slamon et al. 1987).

62 The advent of HER2-targeted therapies has significantly improved the
63 outcomes for patients with HER2-positive breast cancer. Trastuzumab, a humanized
64 monoclonal antibody targeting the extracellular domain of HER2, was the first
65 targeted therapy approved for both metastatic and early-stage HER2-positive breast
66 cancer (Slamon et al. 2001; Piccart-Gebhart et al. 2005). Since then, additional
67 therapeutic classes have expanded the treatment landscape for HER2-positive
68 disease, including tyrosine kinase inhibitors such as lapatinib, neratinib, and tucatinib,
69 and, more recently, HER2-targeted antibody-drug conjugates like T-DM1 and T-DXd,
70 which combine the targeting precision of trastuzumab with potent cytotoxic agents
71 (Verma et al. 2012; Modi et al. 2020). Altogether, these new therapeutic options have

72 had a profound impact on the management of both metastatic and early-stage HER2-
73 positive breast cancer, extending disease control and significantly reducing the risk of
74 recurrence (Swain et al. 2015; von Minckwitz et al. 2017)

75 Therapeutic advancements have greatly improved outcomes for HER2-positive
76 breast cancer, with most patients diagnosed at early stages now achieving a cure and
77 experiencing fewer disease recurrences (von Minckwitz et al. 2017). However, in the
78 metastatic setting, while approximately 16% of patients attain long-term disease
79 control (Swain et al. 2015), the majority eventually develop resistance to anti-HER2
80 therapies, whether through primary resistance, where the disease progresses shortly
81 after treatment initiation, or acquired resistance, where resistance emerges following
82 an initial period of response.

83 The mechanisms underlying the resistance to HER2-targeted therapies are
84 complex and multifaceted. *HER2* mutations in the kinase domain can reduce the
85 effectiveness of treatments by altering the receptor's structure (Marín et al. 2023).
86 Compensatory signaling pathways, such as upregulation of *ERBB3* (also known as
87 *HER3*) and *IGFR* or mutations in the PIK3CA/AKT pathway, allow cancer cells to bypass
88 HER2 inhibition (Mishra et al. 2018; Nagata et al. 2004; Cizkova et al. 2013). Tumor cells
89 can also evade the immune response, particularly antibody-dependent cellular
90 cytotoxicity, by downregulating immune-recognition molecules or recruiting
91 immunosuppressive cells (Loi et al. 2013). The tumor microenvironment, characterized
92 by fibrosis or hypoxia, can also act as a physical barrier to drugs like Trastuzumab
93 emtansine (T-DM1) and Trastuzumab deruxtecan (T-DXd) (Sonnenblick et al. 2020).
94 Finally, some studies suggest that *HER2* transcripts generated by alternative splicing
95 code protein isoforms with enhanced dimerization and modification in their antibody

96 (trastuzumab) binding domain, which are associated with this drug resistance
97 (Scaltriti et al. 2007; Turpin et al. 2016). Thus, a deeper understanding of these
98 resistance mechanisms remains a critical challenge in overcoming and managing
99 breast cancer tumors expressing *HER2*.

100 Alternative splicing, a fundamental post-transcriptional process in eukaryotic
101 gene expression, allows a single gene locus to produce multiple distinct mRNA
102 transcripts, increasing protein diversity (Nilsen and Graveley 2010). In humans, over
103 90% of multi-exon genes undergo alternative splicing, generating roughly seven
104 mRNA isoforms per gene on average, though only a fraction of these yield functionally
105 distinct proteins (Pan et al. 2008; Uhlén et al. 2015; Reixachs-Solé and Eyras 2022). In
106 the context of cancer, aberrant splicing has been implicated in various aspects of
107 tumor biology, including drug resistance (Sveen et al. 2016; Marcelino Meliso et al. 2017;
108 Dvinge et al. 2019).

109 In breast cancer, alternative splicing affects numerous genes involved in key
110 cellular processes, including apoptosis, cell cycle regulation, and signal transduction
111 (Yang et al. 2019). Specifically, *HER2* alternative splicing has gained particular attention
112 in the context of resistance to *HER2*-targeted therapies. *HER2* splice variants have
113 been identified in large scale (Veiga et al. 2022), but most of the studies have been
114 focused on p95 HER2 and delta16 HER2 ($\Delta 16\text{HER2}$) isoforms (Scaltriti et al. 2007; Turpin
115 et al. 2016). The p95 HER2 (also known as CTF611 or HER2-CTF ; here and after, P95) is an
116 incomplete isoform of the *HER2* protein (molecular weight of approximately 95 kDa)
117 lacking the extracellular protein domain and being constitutively active (Molina et al.
118 2001; Arribas et al. 2011). P95's expression has been associated with poor prognosis and
119 resistance to trastuzumab, as it lacks the antibody binding site (Scaltriti et al. 2007).

120 The $\Delta 16$ HER2, results from skipping *HER2* exon 16, which encodes a small portion of
121 the extracellular domain (Kwong and Hung 1998). The $\Delta 16$ HER2 isoform assembles
122 stable homodimers and is associated with increased transforming activity and
123 metastatic potential (Turpin et al. 2016). Controversially, studies suggest that $\Delta 16$ HER2
124 may contribute to trastuzumab resistance (Mitra et al. 2009), whereas others have
125 found that it may enhance sensitivity to specific HER2-targeted therapies (Castagnoli
126 et al. 2014). Thus, the complex interplay between *HER2* splicing isoforms in the context
127 of drug response and resistance requires a more extensive and in-depth investigation.

128 Thus, despite significant advances in HER2-targeted therapies for breast
129 cancer, resistance mechanisms remain incompletely understood, limiting treatment
130 efficacy for many patients. Alternative splicing of *HER2* may represent a critical but
131 underexplored dimension of this challenge. This study aims to comprehensively
132 characterize the landscape of *HER2* alternative splicing isoforms in breast cancer and
133 investigate their potential role in mediating resistance to anti-HER2 therapies,
134 particularly antibody-drug conjugates. By employing long-read sequencing
135 technology and multidimensional analysis approaches, we seek to identify the
136 structural and functional properties of *HER2* splicing variants and determine how
137 their expression patterns relate to treatment response. Through this investigation, we
138 aim to provide a new framework for understanding resistance mechanisms and
139 potentially improve patient stratification for HER2-targeted therapies.

140

141

142 **RESULTS**

143

144 **Assessing the *HER2* splicing isoform diversity in breast cancer**

145

146 Globally, our study comprised five main steps (Figure 1A). First, we expanded the
147 known repertoire of *HER2* splicing isoforms using long-read sequence data from
148 breast tumors (Veiga et al. 2022). Second, we used computational models, classical
149 and based on deep learning, to characterize the main features of the proteins
150 encoded by these *HER2* splicing isoforms, including their functional domains,
151 structural elements, and cellular localization. Third, we analyzed the isoform's
152 expression profile and their translational evidence in a large set of primary breast
153 tumors. Fourth, we evaluated *HER2* isoform expression in breast cancer cell cultures,
154 which were sensitive or resistant to trastuzumab, T-DM1, and T-DXd. Finally, we
155 compared the expression patterns of *HER2* isoforms before and after the emergence
156 of resistance in cell lines exposed to T-DM1 treatment. To ensure reliable isoform
157 expression data, we carefully selected and stratified samples based on technical
158 considerations (e.g., distinct library preparation strategies or low number of mapped
159 reads), confounding effects (e.g., excluding male samples), and biological information
160 about the tumors (HR and HER2 status). We grouped the samples into hormone
161 receptor-positive (HR+) and HR-negative (HR-) categories and further sub-grouped
162 them based on their *HER2* expression status: HER2-high (HER2+++ in
163 immunohistochemistry or FISH/ISH amplified), HER2-low (HER2+ or HER2++, without
164 FISH/ISH amplification), and HER2-zero (no staining), as shown in Figure 1B. This
165 stratification was necessary to ensure fair comparison among breast cancer subtypes,
166 given the distinct evolution and prognosis expected for different patient groups.

167

168 **Expanding the range of functional and structural variants of *HER2* splicing**
169 **isoforms**

170 In the human reference transcriptome - GENCODE V36 (Frankish et al. 2019) the
171 *ERBB2* (*HER2*) gene spans approximately 42.5 kilobases on Chromosome 17 (Chr17:
172 39,687,914 - 39,730,426; reference genome version GRCh38), comprising 27 canonical
173 exons and 13 distinct protein-coding isoforms, along with 9 non-coding isoforms.
174 Importantly, the annotation of *HER2* isoforms remained unchanged from GENCODE
175 V36 to GENCODE V47 (Kaur et al. 2024), which includes an expanded catalog of
176 transcript annotations based on long-read RNA sequencing data. By using full-length
177 mRNA transcripts (Veiga et al. 2022) (see Methods), we have significantly expanded
178 the known repertoire of protein-coding *HER2* splicing isoforms from 13 to 90. In terms
179 of alternative splicing classes, these isoforms primarily result from exon skipping (ES,
180 40 isoforms), alternative 5' splice sites (A5, 26 isoforms), alternative 3' splice sites (A3, 15
181 isoforms), and other types (12 isoforms) (Figure 2A). We observed alternative splicing
182 events in specific *HER2* exons, irrespective of the protein domains they encode.
183 Twenty-three exons (85.1%; 23/27) of the canonical isoform showed evidence of
184 alternative splicing (Figure 2A, colored exons; Supplemental Table S1).

185 To gain insights into their functional features, we categorized *HER2* splicing
186 isoforms into 13 distinct groups based on key characteristics of the proteins they
187 encode: i) completeness of *HER2* protein domains (Receptor L, Furin-like, Growth
188 factor receptor and Protein kinase); ii) predicted cellular localization (cell membrane,
189 cytoplasm, extracellular, or Golgi apparatus); iii) presence of the trastuzumab-binding
190 domain; and iv) presence of the immunohistochemical (IHC) ligand domain (Figure

191 2B; Supplemental Table S2; see Methods for details). Each group represents isoforms
192 sharing similar functional properties but displaying distinct combinations of these
193 features. This classification system revealed substantial heterogeneity in HER2
194 isoform structural and functional characteristics.

195 The majority of isoforms (57.8%, 52/90; groups 1 to 6) retain cell membrane
196 localization, but 10 (11.1%; groups 5, 6) lack the trastuzumab-binding site. Curiously, 16
197 (17.8%; groups 4 and 6) isoforms do not contain the binding domain of antibodies used
198 for IHC staining, which may affect HER2 expression determination by IHC, a critical
199 factor in breast tumor classification. Finally, only 15 isoforms (16.7%) retain all canonical
200 protein domains, suggesting that most alternative isoforms may have some degree
201 of altered functional properties (Figure 2B). To illustrate how the combination of
202 multiple splicing events (e.g., exon skipping and intron retention) shape HER2 isoform
203 diversity, Supplemental Fig. S1 shows the splicing event combinations of a
204 representative isoform for each isoform group (1 to 13).

205 HER2 has two well-studied variants, p95 and Δ16HER2. Here, we took advantage
206 of the full-length transcript analysis to examine beyond individual splicing events (e.g.,
207 exon skipping), revealing complete transcripts that combine multiple alternative
208 splicing events and may encode proteins different from those predicted by examining
209 isolated events alone. Using this approach, we identified nine distinct isoforms that
210 lost exon 16 (Δ16HER2 variants): only one reported in GENCODE (ENST00000580074.1)
211 and eight novel isoforms discovered through our long-read sequencing strategy
212 (Supplemental Fig. S2A). These Δ16HER2 isoforms are distinct because they exhibited
213 additional alternative splicing events, including alternative first exon usage, 5'

214 alternative splice site selection, skipping of exons 19 and 24, and, in one case, three
215 additional alternative splicing events. For p95HER2 (p95), our analysis revealed eight
216 splicing isoforms that encode p95-like proteins (Supplemental Fig. S2B). These
217 isoforms also demonstrated complex splicing patterns, including alternative first exon
218 usage (1 isoform), exon skipping (1 isoform), combinations of alternative first exon with
219 other splicing events (6 isoforms), and upstream small ORFs (see below).

220 Collectively, this comprehensive characterization reveals a complex and diverse
221 landscape of *HER2* splicing isoforms, extending even to well-studied variants like p95
222 and Δ16. It also provides a robust framework for generating new hypotheses about the
223 functional roles of *HER2* splicing isoforms and their potential impact on resistance to
224 HER2-targeted therapies in breast cancer.

225

226 **Characterization of *HER2* isoforms diversity at protein and mRNA levels**

227 To further characterize the spectrum of *HER2* splicing isoform diversity, we analyzed
228 their features at both the mRNA (transcript) and protein dimensions (Supplemental
229 Fig. S3; Supplemental Tables S2 and S3). Transcript length analysis revealed two
230 significant sets of isoforms. First, isoforms with a primary peak length near the
231 canonical *HER2* transcript (ENST00000269571; 4,557 nt) and another minor peak
232 around 2,600 nt (Supplemental Fig. S3A). Protein length distribution showed a
233 significant peak corresponding to the canonical *HER2* protein (1,255 amino acids) and
234 a pronounced left-skewed distribution of shorter proteins (Supplemental Fig. S3B).

235 To assess the degree of similarity among *HER2* isoforms, we performed
236 pairwise sequence alignments at both the transcript and protein levels
237 (Supplemental Fig. S3C; Supplemental Table S4). The resulting correlogram revealed
238 clusters of isoforms closely corresponding to the 13 functional groups defined in
239 Figure 2B. Isoforms from groups 1, 2, 3, 7, 8, and 13 exhibited high similarity (>80%) at
240 both nucleotide and amino acid levels, likely representing variants closely related to
241 the canonical *HER2* sequence (ENST0000026957, group 1). In contrast, most of
242 isoforms from groups 4, 5, 6, 9, 10, 11 and 12 displayed lower similarity (<40% in most
243 cases) to the canonical isoform and other groups.

244 We also evaluated nucleotides and amino acid similarities focused on the set
245 of $\Delta 16$ and p95 *HER2* splicing isoforms (Supplemental Fig. S4B and S4B, respectively).
246 While the eight p95 isoforms showed high similarities to each other at both transcript
247 and protein levels, three of the nine $\Delta 16$ transcripts (33.3%, including the GENCODE-
248 reported isoform ENST00000580074.1) exhibited low similarity to the other five
249 isoforms. Thus, these results highlight the importance of analyzing *HER2* diversity at
250 transcript and protein levels.

251

252 ***HER2* isoform expression patterns across breast cancer subtypes**

253

254 After our comprehensive characterization of *HER2* isoforms, we sought their
255 expression across 561 breast cancer tumors from The Cancer Genome Atlas (Cancer
256 Genome Atlas Network 2012) (Figure 1B). To have groups of clinically and biologically
257 similar tumors and patients, we initially stratified tumors into six specific subgroups
258 based on their hormone receptor (HR) status (HR+ or HR-) and *HER2* expression levels

259 (HER2-high, HER2-low, or HER2-zero) determined by IHC and/or FISH. The refined
260 cohort was sub-classified in 442 samples HR+, including 40 with HER2-zero, 308 with
261 HER2-low, and 94 samples with HER2-high status; 119 samples ER-, divided into 18
262 HER2-zero, 68 HER2-low, and 33 HER2-high samples (Figure 1B, Supplemental Table
263 S5).

264 To confirm the splicing changes observed in *HER2* full-length isoforms (Figure
265 2), we examined exon-exon junction read counts from TCGA breast cancer samples.
266 This analysis reproduced the key splicing patterns initially identified, including exon
267 skipping, alternative splice site usage, intron retention, and mutually exclusive exons,
268 across both known and novel *HER2* isoforms (Supplemental Table S6). All alternative
269 exons were supported by junction reads in the TCGA dataset, demonstrating that
270 these splicing events are present in the breast cancer transcriptome. This orthogonal
271 validation confirms the existence of the alternative splicing events identified through
272 long-read sequencing. Additionally, analysis of *HER2* gene expression (pooled from all
273 isoforms) using RNA-seq data showed strong concordance with *HER2* status
274 determined by immunohistochemistry (Figure 3A and 3B). *HER2*-high tumors
275 exhibited the highest expression levels, followed by progressively lower expression in
276 *HER2*-low and *HER2*-zero tumors. This gradient of expression was observed in both
277 HR+ (Figure 3A) and HR- (Figure 3B) tumors, with significant differences between all
278 *HER2* status categories (Mann-Whitney *U* test, *p*-value < 0.05).

279 Next, we analyzed the expression profiles of all individual *HER2* splicing
280 isoforms across the ISO groups and both TCGA (patients) and CCLE (cell lines) samples
281 from distinct HR and *HER2* statuses. First, using a threshold of TPM > 0, expression
282 evidence was observed for all isoforms (Supplemental Fig. S5). When applying more

283 stringent thresholds (TPM ≥ 1 and TPM ≥ 10), a high proportion of *HER2* total isoforms
284 (92.2% and 51.1%, respectively; Supplemental Table S7) and novel isoforms (93.5% and
285 50.6%, respectively; Supplemental Table S8) remained expressed. Comparative
286 analysis with *TP53* and *AKAP9* revealed these genes have substantially fewer isoforms
287 expressed at these thresholds (Supplemental Tables S7-S8), suggesting particular
288 biological relevance of *HER2* isoform diversity in these samples. We then examined
289 the expression patterns of *HER2* isoforms in detail (Figures 3C (HR+) and 3D (HR-), the
290 top 10 most expressed isoforms; Supplemental Fig. S6 and Supplemental Table S9, all
291 90 isoforms). Overall, HER2-high patients presented the highest expression for all
292 isoforms, followed by HER2-low. HER2-zero samples presented the lowest expression
293 for all isoforms. Accordingly, all breast cancer subtypes presented the same top four
294 most expressed isoforms, including the canonical isoform (ISO 1: ENST00000269571)
295 (Figure 3C-D). However, the canonical isoform was not the highest expressed within
296 all groups. In HR+ samples (Figure 3C), the canonical *HER2* isoform exhibited a
297 gradient of expression (median: HER2-high ~ 6 TPM; HER2-low ~ 4 TPM, HER2-zero ~ 3
298 TPM). ENST00000541774.5 (ISO 7) and PB.14155.831 (ISO 9) showed consistently high
299 expression across all HER2 categories (median > 6 TPM for all groups). PB.14155.385
300 (ISO 1) and ENST00000578373.5 (ISO 12) displayed a gradient similar to the canonical
301 isoform, but with lower overall expression levels. In HR- samples (Figure 3D), while
302 overall patterns of *HER2* splicing isoforms were similar to HR+, some differences were
303 highlighted. The median of expression of HER2-high versus HER2-low and -zero was
304 more pronounced for multiple splicing isoforms, including the canonical. An
305 increased expression variability was noted in the HER2-high group for specific

306 isoforms (e.g., ISO 1: PB.14155.385). Although some differences were observed, no
307 distinct expression patterns were evident within patient groups.

308 Next, since UTR regions play critical roles in post-transcriptional regulation -
309 such as mRNA stability, localization, and translation efficiency - potentially influencing
310 gene expression without altering protein structure (Mayr 2017), we investigated
311 whether UTR length correlated with expression levels in isoforms sharing the same
312 protein-coding region. Our analysis identified six groups comprising 21 isoforms with
313 identical protein sequences but differing 3' UTR regions (Supplemental Table S10).
314 However, we observed no significant association between UTR structural differences
315 and expression profiles (Supplemental Fig. S7), suggesting that, in this context, UTR
316 variation may not be a primary driver of expression regulation.

317 Subsequently, we assessed the prevalence of (% of TCGA patient samples
318 expressing - TPM ≥ 1) different HER2 isoform groups (ISO 1-13) across breast cancer
319 subtypes, as shown in Figures 3E (HR+) and 3F (HR-). In HR+ samples, isoform groups
320 ISO 1, 2, 5, 6, 7, 9, and 12 showed moderate to high prevalence across all HER2
321 categories (zero, low, and high). A similar overall pattern was observed in HR- samples,
322 although with some differences. HER2-high tumors showed more uniform prevalence
323 across all isoform groups than HER2-low and HER2-zero categories. ISO 1-7 were more
324 expressed in HER2-high HR- samples. HER2-zero and HER2-low HR- samples showed
325 more selective isoform expression, with ISO 1, 2, 5, and 6 being the most consistently
326 expressed groups. In both HR+ and HR-, the HER2-high presented the highest
327 number of isoforms expressed in the highest number of samples.

328 Given the established association between p95 expression and poor clinical
329 outcomes, including drug resistance (Scaltriti et al., 2007; Arribas et al., 2011), we

330 conducted a detailed investigation of isoforms encoding p95-like proteins.
331 Specifically, we analyzed the presence of upstream open reading frames (uORFs),
332 known regulatory elements that modulate protein expression through various
333 mechanisms (Young and Wek 2016). Among the p95 HER2 isoforms identified, six
334 (PB.14155.66, PB.14155.556, PB.14155.187, PB.14155.988, PB.14155.651, and PB.14155.309)
335 contained both predicted ORFs and uORFs, while two (PB.14155.407 and PB.14155.1411)
336 lacked uORFs (Supplemental Fig. S8A). Expression analysis revealed significant
337 differences between isoforms with and without uORFs across all HER2 status
338 categories (Supplemental Fig. S8B). Consistent with the typical repressive effect of
339 uORFs on downstream protein expression (Lee et al. 2021; Jagannatha et al. 2024),
340 isoforms lacking uORFs showed significantly higher expression levels compared to
341 those containing uORFs (p -value < 0.0001). Subsequently, we extended the uORF
342 analysis across all *HER2* isoform groups. We identified an additional 19 isoforms
343 containing uORFs distributed across groups ISO 2, 4, 7, 9, and 11 (Supplemental Fig. S9,
344 Supplemental Table S11). In concordance with our observations in P95-like isoforms,
345 comparative expression analysis revealed that isoforms lacking uORFs exhibited
346 consistently higher expression levels than those containing uORFs across nearly all
347 isoform groups and *HER2* status categories. The sole exception to this pattern
348 occurred in group ISO 4 within HR-/HER2-high patients.

349 These findings regarding uORF regulatory mechanism add another layer of
350 complexity to *HER2* isoform expression and potentially influences their biological
351 impact in breast cancer. Altogether, our results reveal a complex landscape of *HER2*
352 isoform expression across breast cancer subtypes, diverging from total *HER2* levels.

353

354 **Mass spectrometry validation and structural prediction of HER2 isoform-derived
355 proteins**

356

357 Since expression evidence was observed for all identified *HER2* splicing isoforms, we
358 proceeded with their characterization at the protein level to strengthen their
359 biological relevance and functionality. Mass spectrometry (MS) provided crucial
360 validation by offering direct evidence of protein isoform expression. Using MS data
361 from 76 breast tumors, we confirmed the presence of proteins from all isoform groups
362 (Figure 4A, Supplemental Table S12). Consistent with RNA-sequencing (RNA-seq)
363 data, HR+ tumors showed proportionally more proteins confirmed by MS than HR-
364 tumors. Similarly, HER2-high tumors presented more validated proteins than HER2-
365 low and HER2-zero tumors, with the latter showing the lowest level of validation
366 (Figure 4A, bottom panel). While isoform groups 5, 6, 9, 10, 11, and 12 showed variable
367 detection patterns, groups 1, 2, 3, 7, 8, and 13 were more frequently detected (Figure
368 4A, bottom panel).

369 It is worth noting that peptides detected by MS may be either shared among
370 multiple isoform groups or specific to a single group. For isoforms with highly similar
371 sequences, peptide assignment may favor one group over others based on spectrum
372 quality and alignment confidence. For example, the peptide CPSSGWR is unique to
373 isoform group 4, whereas MALESILR, detected in group 9, is also present in other
374 isoform groups. These findings confirm the presence of HER2 protein isoforms in
375 breast tumors while acknowledging the inherent limitations of peptide-level
376 resolution in distinguishing closely related isoforms.

377 Next, we investigated the three-dimensional structure of protein isoforms, a
378 fundamental step to understanding their function, interactions, and potential as
379 therapeutic targets. For HER2 isoforms, structural information is particularly crucial as
380 it can reveal how alternative splicing events may alter receptor conformation, ligand
381 binding, dimerization, and downstream signaling capabilities. However, experimental
382 determination of protein structures, especially for multiple isoforms, is time-
383 consuming, expensive, and often challenging. The advent of AlphaFold has
384 revolutionized the field of protein structure prediction (Jumper et al. 2021), allowing
385 the investigation of protein isoforms at an unprecedented scale and speed. Using
386 AlphaFold2, we found striking diversity in the predicted protein structures of HER2
387 isoforms which further corroborated our previous *in silico* predictions. The canonical
388 HER2 isoform (ISO 1: ENST00000269571) displays the complete domain structure
389 (transmembrane domain, full extracellular and intracellular domains, and
390 juxtamembrane domain) with high confidence predictions across most regions
391 (Figure 4B and Supplemental Fig. S10). In contrast, ISO 5 (PB14155.141) shows
392 significant structural alterations, particularly in the extracellular region (Figure 4C).
393 Similarly, ISO 9 (PB14155.831) exhibits an altered structure, lacking several key domains
394 (transmembrane and extracellular domains) and likely retaining only a partial kinase
395 domain (Figure 4D).

396 Collectively, these results add a new layer of functionality to the HER2 isoforms
397 by confirming their translation and presence in breast cancer samples and the
398 structural predictions indicating their distinct functional properties.

399

400 **HER2 isoform clustering reveals novel subgroups within breast cancer patients**

401
402 Next, we investigated the *HER2* splicing isoform usage levels (Percent Spliced In - PSI
403 values), which measure the relative abundance (expression) of a particular splicing
404 isoform of a gene, across 561 breast tumors. First, we examined the internal variability
405 in *HER2* isoform PSI values per cancer subtype. This analysis revealed significant
406 differences within variability in *HER2* isoform expression patterns (Figure 5A). In HR+
407 patients, HER2-high samples showed significantly lower dissimilarity than HER2-low
408 and HER2-zero samples (p -value < 0.0001; Mann-Whitney U test), indicating more
409 consistent isoform expression patterns in HER2-high tumors. HR- patients exhibited
410 a similar trend, with HER2-high samples showing the lowest dissimilarity between
411 HER2-low and zero (p -value < 0.05; Mann-Whitney U test), Figure 5A.

412 Given this significant internal variability in isoform expression, we subsequently
413 explored the possibility of identifying patient clusters exhibiting similar expression
414 patterns within each *HER2* subgroup. Accordingly, unsupervised hierarchical
415 clustering of PSI values revealed distinct subgroups within clinically defined *HER2*
416 status categories (HR+ breast cancer samples: Figure 5B; HR- breast cancer samples:
417 Supplemental Fig. S11A; Supplemental Table S13). We found a complex landscape of
418 *HER2* isoform usage that extends beyond conventional *HER2* expression levels. The
419 clustering analysis identified three major clusters within each clinically defined tumor
420 group for both HR+ and HR- patients: HER2-zero (clusters Z1-Z3), HER2-low (clusters
421 L1-L3), and HER2-high (clusters H1-H3) (Figure 5B for HR+ samples; Supplemental Fig.
422 S11A for HR- samples), revealing an intricate pattern of isoform expression that varied
423 within tumor groups with the same HR/HER2 status, yet it was to some extent,
424 recapitulated in clusters of distinct groups. Across all patients, isoforms from groups

425 (ISO) 1, 5, 7, and 9 showed proportionally higher expression compared to all others, but
426 with distinct expression patterns among them. Specifically, in HR+ clusters Z1, L1, and
427 H3 (Figure 5B), as well as HR- clusters H3, L3, and Z2 (Supplemental Fig. S11A), we
428 observed high expression of ISO 9 and ISO 5. Since these isoforms lack the
429 trastuzumab-binding domain, their predominance might predict poor response to
430 HER2-targeted therapies. Conversely, HR+ clusters H1, L2, and Z3 (Figure 5B), along
431 with HR- clusters H1, L2, and Z3 (Supplemental Fig. S11A), showed highest expression
432 of ISO 7 and ISO 1, which retain the trastuzumab-binding domain, suggesting
433 potential favorable response to HER2-targeted therapies. Clusters H2, L3, and Z2
434 (Figure 5B; H2, L1, and Z1 for HR-, Supplemental Fig. S11A) exhibited a gradient of
435 expression from ISO 7 to ISO 5, ISO 9, and ISO 1, suggesting more variable therapeutic
436 responses.

437 The HER2-low category exhibited the most heterogeneous isoform expression
438 patterns. While the subgroup L3 closely resembled the HER2-high profile, the L1
439 showed isoform expression patterns more similar to HER2-zero tumors, enriched with
440 expression of isoforms from group 9 (out of cell membrane and without trastuzumab
441 ligand). This heterogeneity within the HER2-low category may explain the variable
442 responses to ADC HER2-targeted therapies (T-DXd) observed in clinical studies of this
443 patient population. To further characterize the *HER2* expression patterns across the
444 identified patient clusters, we analyzed both total *HER2* gene expression and the
445 expression of specific *HER2* isoform groups. Total *HER2* gene expression levels (i.e., the
446 sum of all isoforms), as expected, confirmed that HER2-high clusters (H1, H2, and H3)
447 have an elevated *HER2* expression (median 8-10 log₂(TMP+1)) compared to the HER2-
448 low (median 6.5-7.5 log₂(TMP+1)) and HER2-zero (median 5.5-7 log₂(TMP+1)) clusters

449 (HR+, Figure 5C; HR-, Supplemental Fig. S11B). No statistically significant differences
450 were found in total *HER2* expression among clusters within each *HER2* group, except
451 for Z3 (HR+).

452 We next focused on the expression of *HER2* isoforms encoding proteins
453 localized to the cell membrane and containing the trastuzumab-binding domain (ISO
454 1-4 groups), given their potential clinical relevance for trastuzumab-based therapies
455 (HR+, Figure 5D; HR-, Supplemental Fig. S11C). The H2 and H1 clusters showed the
456 highest expression of these clinically relevant isoforms. The H3 cluster (~26% of *HER2*-
457 high patients), despite being classified as *HER2*-high, exhibited lower expression of
458 these isoforms (ISO 1-4), more closely resembling the levels seen in some *HER2*-low
459 clusters. This result highlights the heterogeneity even within the *HER2*-high category
460 and may suggest why *HER2*-high tumors have a low or no responsiveness to
461 trastuzumab-based treatments. Among the *HER2*-low, L2 (46% of *HER2*-low patients)
462 and L3 (30% of *HER2*-low patients) show a moderated expression of ISO 1-4 isoforms,
463 with levels between H1 and H3 clusters, which may support the fact that some *HER2*-
464 low tumors are responsive to *HER2* targeted ADCs, as T-DXd. In contrast, group L1
465 (~24% of *HER2*-low patients) has low expression of ISO 1-4 and high expression of
466 isoforms from groups 5 and 9 (which lack the trastuzumab binding domain),
467 suggesting a potential group of lower/no response to T-DXd or other ADCs targeting
468 *HER2*. The same pattern was observed for HR- samples (Supplemental Fig. S11C).
469 Finally, we also identified the most abundantly expressed isoforms from each isoform
470 group (ISO 1-13) in both HR+ and HR- samples (Supplemental Fig. S12 and S13,
471 respectively). Overall, HR+ and HR- samples showed a similar expression pattern in
472 terms of the most abundant expressed isoforms per group.

473 Although alternative splicing is a major source of transcript diversity, alternative
474 promoter usage also contributes by generating isoforms with distinct 5' UTR regions
475 that may influence mRNA translation efficiency and the coding region start site.
476 Therefore, analyzing promoter activity alongside alternative splicing provides insight
477 into how transcriptional and post-transcriptional mechanisms shape the complex
478 HER2 isoform landscape in breast cancer. By performing this analysis, we identified 22
479 potential promoter regions for the HER2 gene, designated P1 to P22 (Supplemental
480 Fig. S14A, Supplemental Table S14). When mapped against our functionally defined
481 isoform groups (ISO 1–13), no clear association emerged between promoter usage and
482 functional properties. Isoforms within the same group were often regulated by
483 different promoters, while individual promoters—particularly P4—regulated isoforms
484 across multiple groups (ISO 1–5, 8, 11–13). To validate these predictions, we integrated
485 CAGE data from the FANTOM project, which maps transcription start sites through
486 detection of 5'-capped RNA, and H3K4me3 ChIP-seq data from ENCODE, which marks
487 active promoter chromatin states (Supplemental Fig. S14B). A substantial fraction of
488 predicted promoters overlapped with CAGE peaks and/or H3K4me3 signals,
489 confirming their functional relevance. Analysis of promoter activity across breast
490 cancer patient clusters previously stratified by HER2 isoform expression
491 (Supplemental Fig. S15, Supplemental Table S15) revealed that promoter P4
492 consistently showed the highest relative activity across all HR/HER2 subgroups.
493 However, we observed no significant differences in promoter usage patterns between
494 patient clusters, indicating that promoter regulation remains conserved across breast
495 cancer subtypes.
496 To expand our understanding of *HER2* isoform expression beyond breast

497 cancer, we analyzed normal breast tissue and three gynecologic tumor types - cervical
498 (CESC), ovarian (OV), and endometrial (UCEC) - which are clinically relevant in the
499 context of HER2-targeted therapies. Using RNA-seq data from TCGA and focusing on
500 samples with high *HER2* expression, we observed widespread expression of *HER2*
501 isoforms across all tumor types, with CESC, OV, and UCEC tumors expressing a
502 broader diversity of isoforms. Unsupervised clustering of PSI values revealed distinct
503 patterns of isoform usage within each tumor type, including prominent expression of
504 isoforms from groups ISO 1, 5, 7, and 9, mirroring some of the patterns observed in
505 breast cancer. Gynecologic tumors displayed considerable heterogeneity in *HER2*
506 isoform usage, suggesting that similar isoform-driven mechanisms of resistance or
507 responsiveness to HER2-targeted therapies may extend beyond breast tumors
508 (Supplemental Fig. S16).

509 All together, this detailed isoform-level analysis reveals a complex picture of
510 *HER2* expression in breast (and other) cancers, identifying subgroups with distinct
511 isoform utilization patterns that transcend traditional *HER2* status classifications.
512 These findings hold significant potential for refining patient stratification and
513 improving response predictions to HER2-targeted therapies.

514

515 **HER2 isoform profiles concerning antibody-drug conjugate sensitivity**

516

517 Next, we investigated the relationship between *HER2* isoform expression patterns in
518 breast cancer cell lines and their response to T-DM1 or T-DXd (Figure 6A; Supplemental
519 Table S16). Among HR+/HER2+ cell lines, BT-474, EFM-192A, MDA-MB-361, and ZR-75-

520 30 showed sensitivity to T-DM1, while UACC-812 was resistant. In HR-/HER2+ cells,
521 AU565, HCC1954, MDA-MB-453, and SK-BR-3 demonstrated sensitivity to T-DM1, while
522 JIMT-1 and UACC-893 were resistant. MDA-MB-453 and SK-BR-3 showed sensitivity to
523 both T-DM1 and T-DXd, while BT-474 was resistant only to T-DXd. The BT-474 cell line
524 contains a *SLX4* mutation (c.1181G>C, p.R394T), previously identified as a potential
525 mechanism of resistance to T-DXd, because *SLX4* encodes a DNA repair protein that
526 regulates structure-specific endonucleases and seems to play a role in resistance to
527 TOP1 inhibition. Among HER2- cell lines, MCF-7 and ZR-75-1 (HR+) and MDA-MB-231
528 (HR-) showed resistance to both ADCs, consistent with their low *HER2* expression
529 levels. These results indicate a complex relationship between *HER2* (isoform)
530 expression and ADC response. While most HER2+ cell lines expressing high levels of
531 *HER2* and both isoform groups (ISO 1-4 and ISO 5-13) showed sensitivity to ADCs, cell
532 lines expressing lower levels of the isoforms from groups 1-4 (ISO 1-4; UACC-812, ZR-
533 75-1, MDA-MB-231, MDA-MB-468, JIMT-1, BT-474), which have the trastuzumab-
534 binding domains and are predicted to be located in cell membrane, are resistant to T-
535 DM1 or T-DXd (Figure 6A).

536 Based on the previous results, we decided to better investigate the relationship
537 between different HER2 isoform groups and ADC response. We evaluated the
538 expression of ISO 5-13 (isoforms lacking trastuzumab-binding domain and/or located
539 outside the cellular membrane) against ISO 1-4 (isoforms with intact trastuzumab-
540 binding domain) across breast cancer cell lines (Figure 6B). Since the diagonal dashed
541 line represents an equal expression of both isoform groups and the circle size
542 indicates the levels of *HER2* gene expression, most ADC-responsive cell lines (labeled
543 in green, such as HCC1954, AU565, and BT-474) clustered in the high-expression

544 region and maintain a balanced ratio between ISO 1-4 and ISO 5-13 expression. UACC-
545 812, in spite of showing high overall *HER2* expression, demonstrated resistance to
546 ADCs and exhibited higher expression of ISO 5-13 relative to ISO 1-4 (positioning it
547 above the diagonal). Similarly, JIMT-1, ZR-75-1, MDA-MB-231, and MDA-MB-468 showed
548 resistance to T-DM1 and/or T-DXd and a higher expression of ISO 5-13 relative to ISO 1-
549 4. On the other hand, MCF-7 and UACC-893 showed ADC resistance regardless of their
550 ISO 1-4 to ISO 5-13 ratio. We have several different cell lines under and above the
551 diagonal (each circle represents a cell line). Still, for most of them, we have no ADC
552 treatment available (circles without names). To gain further insight into the expression
553 profile of *HER2* and its isoforms in these additional cell lines, but without ADC
554 treatment information, we created Figure 6C. HR+/HER2- cell lines showed
555 consistently low to moderate expression of both isoform groups, with relatively
556 balanced ratios between ISO 1-4 and ISO 5-13. HR-/HER2+ cell lines exhibited the
557 highest total levels of *HER2* expression and maintained substantial expression of both
558 isoform groups. The largest group, HR-/HER2- cell lines, demonstrated consistently
559 low expression of both isoform groups, albeit with some variability in the relative ratios
560 of ISO 1-4 and ISO 5-13. Finally, we conducted an analysis examining expression
561 patterns across all *HER2* isoform groups in cell lines responsive (R) and non-responsive
562 (NR) to antibody-drug conjugates (Supplemental Fig. S17). We found significantly
563 increased expression of isoform groups ISO 1, 6, and 12 in responsive cell lines. While
564 ISO 1 and 6 encode membrane-localized proteins, only ISO 1 retains the trastuzumab-
565 binding domain, providing a clear mechanistic rationale for ADC efficacy. Group ISO
566 12, comprising extracellular isoform proteins without direct involvement in *HER2*

567 recognition, also showed elevated expression in responsive cell lines, though the
568 functional implications remain to be determined.

569 Altogether, these results indicated that high HER2 expression and a balanced -
570 though slightly variable - expression of ISO 1-4 and ISO 5-13 in most cell lines appear
571 necessary for effective cellular responses to HER2-targeted therapies. In contrast,
572 disruptions in isoform expression, as observed in some drug-resistant lines (e.g.,
573 UACC-812, which shifted toward ISO 5-13), may contribute to resistance against HER2-
574 targeted therapies. However, other mechanisms (e.g., the SLX4 mutation in BT-474
575 and additional isoform-related factors) can confer ADC resistance independent of
576 isoform expression patterns.

577

578 **Dynamic changes in *HER2* isoform expression associated with acquired resistance
579 to trastuzumab and T-DM1**

580

581 Finally, to illuminate the molecular mechanisms underlying acquired resistance to
582 HER2-targeted therapies, we investigated the *HER2* gene and isoform expression
583 profiles in breast cancer cell lines before and after developing resistance to
584 trastuzumab and T-DM1 (Figure 7, Supplemental Table S17).

585 We first examined the overall *HER2* expression in SK-BR-3 and BT-474 cell lines
586 in sensitive and resistant states to trastuzumab (Figure 7A). Both cell lines in the two
587 states maintained significantly high levels of *HER2* expression (Figure 7A), indicating
588 that resistance to trastuzumab is not primarily mediated by a global downregulation
589 of *HER2* expression (Vernieri et al. 2019). In fact, since trastuzumab targets HER2
590 function, we hypothesize that its upregulation may serve as a compensatory

591 mechanism to offset its own inhibition by treatment, thus sustaining downstream
592 signaling pathways that promote rapid tumor cell growth and proliferation.

593 Next, to gain deeper insights into potential resistance mechanisms, we
594 analyzed the *HER2* isoform expression profiles and fold change of each isoform group
595 in trastuzumab-resistant versus sensitive cells for both SK-BR-3 and BT-474 lines
596 (Figure 7B; Supplemental Fig. S18). In SK-BR-3 cells, we observed significant
597 upregulation of multiple isoform sets. In contrast, isoforms from group 8 showed
598 downregulation (\log_2 fold change ~ -0.4) in resistant conditions (Figure 7B;
599 Supplemental Fig. 16A). Overall, BT-474 cells also exhibited upregulation of sets of
600 isoforms, except for isoforms from groups 3, 5, and 8 (Supplemental Fig. 16B).

601 Next, we investigated the impact of acquired resistance to T-DM1 on *HER2*
602 expression in SK-BR-3 and BT-474 cells (Figure 7C; Supplemental Fig. S19A). Unlike
603 trastuzumab-resistant cells (Figure 7A), both T-DM1-resistant SK-BR-3 and BT-474
604 cells showed an important decrease in overall *HER2* expression compared to sensitive
605 cells, from 11.3 to 10.6 and 10.9 to 10.1 $\log_2(\text{TPM}+1)$, respectively (Figure 7C; Supplemental
606 Fig. S19A).

607 Lastly, we performed a detailed analysis of *HER2* isoform expression levels in T-
608 DM1-resistant and -sensitive SK-BR-3 and BT-474 cells. We observed complex
609 changes in the isoform landscape for SK-BR-3 (Figure 7D) and BT-474 (Supplemental
610 Fig. S19B). First, the fold change (T-DM1 resistant/sensitive) analysis showed that most
611 splicing isoforms are significantly downregulated, including isoforms from sets 1 to 4
612 (isoforms with intact domains; Figure 7D). Splicing isoforms from sets 5 and 9 are
613 upregulated in T-DM1-resistant cells (Figure 7D). In BT-474, we observed a significant
614 downregulation of all splicing isoforms (Supplemental Fig. S19B). Altogether, these

615 findings suggest that SK-BR-3 has adapted to T-DM1 treatment pressures by altering
616 the balance of *HER2* isoforms to downregulate the drug target isoforms (groups ISO 1
617 to 4) and upregulating the pro-survival signaling (isoforms from groups ISO 5 and 9,
618 which lack the trastuzumab binding site and seems to retain the signaling capabilities
619 through the tyrosine kinase domain), a putative mechanism to evade this ADC's
620 effects.

621

622 **DISCUSSION**

623 In this investigation, we uncover a complex landscape of *HER2* splicing isoform
624 diversity in breast cancer that goes well beyond the conventional understanding of
625 *HER2* biology (Arteaga and Engelman 2014) and its role in targeted therapies (Modi et
626 al. 2020; Tarantino et al. 2020). The full characterization of the set of 90 *HER2* coding
627 isoforms, including 77 novel variants, significantly expands our knowledge of *HER2*
628 expression and variations and sheds light on the role of *HER2* splicing isoforms in
629 antibody-conjugated targeted therapy resistance.

630 First, our strategy emphasizes the importance of identifying alternative splicing
631 isoforms through the use of full-length transcripts obtained via long-read sequencing,
632 an approach that has been shown to provide superior accuracy and sensitivity in
633 genomic analysis in breast cancer (Aganezov et al. 2020). This approach has allowed
634 us to achieve a comprehensive characterization at the isoform level, rather than solely
635 focusing on the splicing events themselves. This reveals the composition of all exons
636 and the open reading frame (and subsequent protein) encoded by each isoform. The
637 breadth of our strategy becomes clear when we look at the two most studied *HER2*
638 isoforms, $\Delta 16$ and p95: i) identified 8 distinct isoforms with different splicing events

639 that encode proteins lacking the extracellular domain and have an approximate
640 molecular weight of 95 kDa; ii) for $\Delta 16$, we found 9 isoforms, all containing the exon 16
641 skipping ($\Delta 16$'s hallmark) and exhibiting other alternative splicing events.
642 Understanding not just the event (e.g., exon skipping), but the full set of isoforms that
643 contains such events and others certainly gives us a more complete understanding of
644 the importance and functionality of each alternative splicing isoform.

645 The structural and functional diversity revealed in the HER2 isoforms, including
646 alterations in the HER2 protein domains and cell localization, and the presence or lack
647 of the trastuzumab binding sites, provides new insights into the heterogeneity of
648 response in targeted therapy using antibodies and ADCs. These splicing isoform
649 diversity profiles may explain, in part, the complex mechanisms of resistance to HER2-
650 targeted therapies observed in clinical practice (Nahta and Esteva 2006; Luque-Cabal
651 et al. 2016).

652 We observed variability in the expression of *HER2* splicing isoforms across the
653 intrinsic subtypes of breast cancer, with the HER2-high group displaying the most
654 uniform expression profile. This is the same patient group that shows the most
655 consistent and profound response to anti-HER2 therapies, whether in early-stage or
656 metastatic disease (Gianni Luca et al. 2012; Baselga Jose. et al 2012)). This correlation
657 suggests that the homogeneity in *HER2* isoform expression may play a role in
658 influencing therapeutic response.

659 Identifying HER2 splicing isoforms lacking the antibody (drug) binding
660 domains, but retaining the signaling capabilities (tyrosine kinase domain), may
661 explain a potential resistance mechanism to antibody-based therapies like
662 trastuzumab and ADCs. This aligns with previous studies on p95, which lacks the

663 trastuzumab binding site and has been associated with poor prognosis and resistance
664 in antibody-based therapy treatment (Scaltriti et al. 2007). Therefore, the expanded
665 repertoire of HER2 isoforms presented here suggests that alternative splicing may be
666 a more prevalent and leading mechanism used by cancer cells in acquiring resistance
667 and progression, especially in gene-targeted therapies.

668 The dynamic changes in *HER2* isoform expression observed in cell lines
669 acquiring resistance to trastuzumab or T-DM1 highlight the adaptive nature of cancer
670 cells. Specifically, our findings indicate that the SK-BR3 cancer cell line adapted to T-
671 DM1 treatment pressures by altering the balance of *HER2* isoforms - downregulating
672 those containing the drug target epitopes (isoforms in sets 1 to 4) and upregulating
673 the *HER2* splicing isoforms (sets 5 and 9) lacking the antibody (trastuzumab) binding
674 site domains. This shift was not observed under trastuzumab treatment, suggesting
675 a mechanism of acquired resistance specific to ADC therapy. Broadly, these findings
676 open new avenues for understanding and potentially mitigating therapy resistance
677 through various strategies, including the development of *HER2* isoform-specific
678 inhibitors, combination approaches targeting multiple isoform-encoded proteins,
679 and the use of tyrosine kinase inhibitors such as lapatinib that target the kinase
680 domain.

681 Furthermore, our observations indicate that among tumor subtypes (HER2-
682 high, -low, and -zero), there are distinct subgroups of tumors expressing different
683 splicing isoforms, some of which encode protein isoforms lacking the binding domain
684 for antibodies used in immunohistochemistry. This may explain why a percentage of
685 HER2-low or even HER2-zero patients (as determined by immunohistochemistry)
686 respond to treatment. It is reasonable to hypothesize that specific isoform

687 compositions may create a false classification of HER2 status and vulnerabilities to
688 ADC treatment, even in contexts with low *HER2* expression (by
689 immunohistochemistry) (Tarantino et al. 2020).

690 While our study provides comprehensive insights into HER2 isoform diversity
691 and its implications for targeted therapy, several limitations should be acknowledged.
692 First, our cell line-based resistance models, while informative, may not fully
693 recapitulate the complexity of resistance mechanisms in breast cancer patients,
694 where tumor heterogeneity and microenvironment factors play crucial and yet
695 incompletely understood roles (Vander Velde et al. 2020; Roma-Rodrigues et al. 2017).
696 Second, although we validated the existence of *HER2* isoforms through RNA-seq
697 expression in a large patient cohort and mass spectrometry confirmation, functional
698 validation of individual isoforms' biological roles and their specific contributions to
699 drug resistance mechanisms requires further investigation. Third, while long-read
700 sequencing enabled comprehensive isoform identification, technical limitations in
701 detecting low-abundance transcripts might have led to underestimation of rare
702 isoforms (Uapinyoying et al. 2020). Fourth, our study focused primarily on the role of
703 *HER2* isoforms in antibody-based therapy resistance, and their potential impact on
704 other treatment modalities, such as tyrosine kinase inhibitors, needs to be fully
705 explored. Finally, while our findings suggest the importance of isoform-specific
706 testing in clinical settings, the development and validation of practical diagnostic
707 tools for *HER2* splicing isoform profiling will require additional technical and clinical
708 validation studies (Wang and Aifantis 2020).

709 Despite these limitations, our findings suggest that incorporating *HER2*
710 isoform profiling into clinical assessment could significantly enhance prediction of

711 response to trastuzumab and antibody-drug conjugates. Future prospective studies
712 with larger HER2+ patient cohorts are needed to validate whether patients expressing
713 isoforms lacking the trastuzumab binding domain experience poorer clinical
714 outcomes, which could guide more personalized therapeutic approaches.
715 Additionally, mechanistic studies should investigate the direct functional impact of
716 specific HER2 isoforms on trastuzumab response through ectopic expression in HER2-
717 negative cell backgrounds. Such controlled experiments would eliminate potential
718 confounding factors from diverse genetic backgrounds and provide direct evidence
719 for how specific structural variations in HER2 isoforms influence therapeutic response.
720 This experimental approach would be particularly valuable for validating the clinical
721 relevance of isoforms lacking the trastuzumab binding domain and could inform
722 more precise patient selection strategies for HER2-targeted therapies.

723 In conclusion, our comprehensive investigation into the diversity of HER2
724 isoforms uncovers a complex landscape that may have significant implications for
725 breast cancer biology and treatment approaches utilizing antibody-drug conjugates
726 (ADCs). Our findings indicate that integrating HER2 isoform profiling into clinical
727 practice - despite its current limited implementation in many centers - may greatly
728 improve patient stratification and treatment selection, potentially leading to more
729 effective targeted therapies. This research establishes a solid foundation for a more
730 refined approach to HER2-positive breast cancer. We propose that optimal ADC
731 treatment strategies should be tailored not only to *HER2* expression levels, but also to
732 the specific isoform profiles present in each tumor.

733

734 **METHODS**

735 Public short-read RNA sequencing data

736 We obtained unprocessed RNA sequencing (RNA-seq) data from 561 primary tumors
737 sourced from female breast cancer patients, publicly accessible via The Cancer
738 Genome Atlas (TCGA) repository (<https://portal.gdc.cancer.gov>). Additionally, we
739 obtained clinical data detailing immunohistochemical (IHC) staining results for HER2,
740 estrogen receptor (ER), and progesterone receptor (PR), as well as fluorescence *in situ*
741 hybridization (FISH) data for HER2. In addition, RNA-seq data from 50 breast cancer
742 cell lines were acquired from the Cancer Cell Line Encyclopedia (CCLE,
743 <https://sites.broadinstitute.org/ccle/>), and data on cell line sensitivity to T-DXd and T-
744 DM1 were obtained from previous studies (Supplemental Table S16). RNA-seq data
745 from trastuzumab-sensitive and -resistant SK-BR-3 and BT-474 cell lines were
746 obtained from (Duan et al. 2024) and (Mukund et al. 2024), respectively. RNA-seq data
747 from T-DM1-sensitive and -resistant SK-BR-3 and BT-474 cell lines were obtained from
748 (Gedik et al. 2024)

749 Public long-read RNA sequencing data

750 We obtained processed long-read RNA sequencing data from 26 tumor and 4 normal
751 breast samples from (Veiga et al. 2022) to create an expanded catalog of *HER2*
752 isoforms. Briefly, in (Veiga et al. 2022), full-length cDNA was synthesized from poly-A+
753 transcripts, PCR-amplified, and sequenced on PacBio RSII or Sequel platforms to
754 capture full-length transcripts. Reads were processed with the ToFU pipeline (Gordon
755 et al. 2015) to generate error-corrected consensus transcripts, which were then
756 aligned to the human genome (GRCh38/hg38) using GMAP (Wu and Watanabe 2005).
757 SQANTI (Tardaguila et al. 2018) was used for transcript annotation and quality control,

758 filtering out artifacts based on criteria such as indel correction, 3' end validation, non-
759 canonical splice site detection, and no splice junction support. All steps were
760 performed to ensure a high-confidence catalog of novel full-length transcripts,
761 minimizing technical artifacts while capturing transcript diversity in breast cancer
762 samples. Based on this catalog of novel full-length transcripts, we created an
763 expanded version of the human reference transcriptome including 13 known protein-
764 coding *HER2* isoforms from GENCODE (version 36;
765 <https://www.gencodegenes.org/human/>) along with 77 novel full-length protein-
766 coding *HER2* isoforms identified in their previous study.

767 **Quantification of isoform and gene expression levels**

768 Using the kallisto tool (version 0.48.0; default parameters with option --bootstrap-
769 samples 100) (Bray et al. 2016), we pseudo-aligned the RNA sequencing short reads
770 from all patients and cell lines to the expanded version of the human reference
771 transcriptome created using GENCODE and long-read RNA-seq data of breast cancer
772 samples from (Veiga et al. 2022). Next, isoform expression levels normalized in
773 transcripts per million (TPM) were submitted to SUPPA2 (version 2.3; default
774 parameters) (Trincado et al. 2018), which quantifies percent spliced-in (PSI) values,
775 indicating the proportion of expression that each isoform of a gene corresponds to.
776 Gene-level expression profiles were also obtained using the tximport R package
777 (version 1.26.1) (Soneson et al. 2015).

778 **Characterization of *HER2* splicing isoforms**

779 To characterize the *HER2* isoforms in terms of alternative splicing local events, coding
780 potential, functional domains, transmembrane topology, and subcellular localization,

781 we used several strategies. First, coding sequences (ORFs) from 77 novel *HER2*
782 isoforms previously determined (Veiga et al. 2022) using Transdecoder (Haas et al.
783 2013) were extracted, and coding sequences from 13 known *HER2* isoforms were
784 directly retrieved from GENCODE (version 36). Local alternative splicing events were
785 identified using the “generateEvents” function in SUPPA2 (Trincado et al. 2018) with
786 default parameters; for intron retention (IR) events, additional parameters --boundary
787 V and --threshold 10 were applied. Multiple exon skipping (ES) events, which are not
788 reported by SUPPA2, were manually extracted.

789 To confirm the presence of alternative splicing events identified with SUPPA2,
790 we additionally employed rMATS turbo (v4.3.0) (Wang et al. 2024) with default
791 parameters, a statistical tool that detects alternative splicing events from RNA-seq
792 data by examining exon-exon junction read counts. For this analysis, we used RNA-
793 seq data from 561 TCGA breast cancer samples stratified by HR/HER2 status. We
794 extracted read counts supporting both inclusion and exclusion of alternative splicing
795 events using rMATS. Events were considered confirmed when the mean number of
796 both inclusion and exclusion junction counts exceeded zero in at least one HR/HER2
797 group.

798 Protein domains from all *HER2* coding sequences were predicted using the
799 hmmsearch tool from HMMER (version 3.3.1; default parameters) (Potter et al. 2018)
800 based on the Pfam database (Mistry et al. 2021). Predictions of transmembrane
801 topology were performed using the DeepTMHMM web tool (default parameters)
802 (Hallgren et al. 2022), which uses a deep learning algorithm to predict the topology of
803 alpha-helical and beta barrels. Protein subcellular localizations were determined

804 based on the DeepLoc 2.0 tool (default parameters) (Ødum et al. 2024). To evaluate
805 the presence of the immunohistochemical (IHC)-binding region in HER2 isoforms, we
806 considered 3 IHC antibodies: PATHWAY HER2, Herceptest and Oracle HER (Cho et al.
807 2003). Besides, similarities among HER2 proteins were evaluated through pairwise
808 protein alignments using the needle global aligner
809 (https://www.ebi.ac.uk/jdispatcher/psa/emboss_needle).

810 **Validation of HER2 isoforms at the protein level**

811

812 Validation of HER2 isoforms at the protein level was performed using MS/MS data
813 from 76 breast cancer patients in the CPTAC TCGA dataset (study ID: PDC000173). We
814 employed the PepQuery tool (v2.0.2) (Wen and Zhang 2023) with default parameters,
815 using as reference 103,069 proteins from GENCODE release 36. Each HER2 protein
816 derived from expressed splicing isoforms was queried in the MS/MS data to identify
817 supporting peptide spectrum matches (PSMs). Following *in silico* trypsin digestion,
818 PepQuery attempted to validate the resulting peptides against the mass
819 spectrometry data. After multiple filtering steps, only PSMs passing all criteria with an
820 FDR < 0.05 were considered confident. Validated peptides were then assigned to their
821 respective isoform groups (ISO 1 to 13), rather than being restricted to unique peptides
822 for each protein. Given the high sequence similarity among HER2 proteins, this
823 approach allowed for a more comprehensive and reliable assessment of isoform
824 detection.

825

826 Prediction of 3D protein structures of HER2 isoforms

827 The prediction of the HER2 isoforms' 3D protein structures was made with AlphaFold2
828 (Jumper et al. 2021) through the free and publicly available Google collaborator
829 ColabFold (v1.5.5) platform (Mirdita et al. 2022). We opted to run the predictions this
830 way due to its speed by combining it with a fast homology search with MMseqs2
831 (Steinegger and Söding 2017) and HHsearch (Steinegger et al. 2019), and the usage of
832 the highly accurate PDB100 (Varadi et al. 2024) as its database. All analyses were run
833 in a "High-RAM (system: 51GB; GPU: 15GB) T4 GPU" machine with Python 3 and more
834 than 200GB of disk space.

835 All parameters were left default, except "num_recycles = 24" because
836 membrane proteins require a higher number of recycles for better results. Several
837 outputs are made available, including not only the predicted protein structure itself,
838 but also alignments for reference, PDB files per ranked model for editions, and other
839 plots to support the results. The quality of the predictions was assessed by analyzing
840 two metrics: (i) the MSA (multiple sequence alignment) coverage outputs, where at
841 least 30, ideally 100 sequences per position are ideal for better performance; (ii) the
842 pLDDT scores, both for each amino acid and also for the entire structure, where higher
843 scores (out of 100) - ideally above 70% ("ok"), especially above 80% ("confident") - mean
844 more confidence and, as a consequence, better models (Supplemental Fig. S10). The
845 best model (rank 1, among five runs in total), *i.e.*, the one with the highest pLDDT score,
846 was always chosen.

847 Alternative promoter usage analysis

848 To investigate alternative promoter usage of HER2 isoforms, we analyzed splice
849 junction data from 561 TCGA breast cancer RNA-seq samples. Following the
850 methodology of Demircioğlu et al. (Demircioğlu et al. 2019), we first identified
851 transcription start sites (TSSs), defined as the start of the first exon, for 90 protein-
852 coding HER2 isoforms (annotated in GENCODE (v36) or identified through long-read
853 RNA sequencing). Overlapping first exons were grouped to define promoter-
854 regulated transcript sets, with the 5'-most TSS selected to represent each promoter.
855 Internal promoters, those whose first splice junctions match internal junctions of
856 other isoforms, were identified based on splice junction coordinates. Promoter activity
857 was quantified using the Junction Read Counts method (Demircioğlu et al. 2019),
858 which aggregates read counts from the first splice junctions of transcripts regulated
859 by each promoter. For internal promoters, we applied the normalization strategy of
860 Zhang et al. (Zhang et al. 2024), which corrects for ambiguity in read assignment by
861 adjusting donor site read counts based on corresponding acceptor site usage.
862 Absolute promoter activity was calculated using DESeq2 (Love et al. 2014) as $\log_2(\text{total}$
863 splice junction read counts / DESeq2 normalization factor), and relative promoter
864 activity was derived by dividing each promoter's absolute activity by the total HER2
865 promoter activity within each sample.

866 **DATASETS**

867 All data used in this study are publicly available from the following sources. RNA
868 sequencing (RNA-seq) data from 561 primary breast tumors from female patients
869 were obtained from the database of Genotypes and Phenotypes (dbGaP) under TCGA
870 accession number phs000178.v11.p8. Long-read RNA sequencing data from 26 tumor

871 and 4 normal breast samples are available at the European Genome-phenome
872 Archive (EGA) under accession number EGAS00001004819. RNA-seq data from 50
873 breast cancer cell lines were obtained from the Cancer Cell Line Encyclopedia (CCLE;
874 <https://sites.broadinstitute.org/ccle/>). RNA-seq data from trastuzumab-sensitive and -
875 resistant SK-BR-3 and BT-474 cell lines were obtained under accession PRJNA995876
876 and GSE244537, respectively. RNA-seq data from T-DM1-sensitive and -resistant SK-
877 BR-3 and BT-474 cell lines were obtained under access PRJNA1048320. Mass
878 spectrometry data from 76 breast cancer patients were obtained under accession
879 PDC000173.

880 **COMPETING INTEREST STATEMENT**

881 The authors declare no competing interests.

882

883 **ACKNOWLEDGMENTS**

884 This work was supported by grant 2018/15579-8, São Paulo Research Foundation
885 (FAPESP) to PAFG; grants 2020/14158-9 (to FFS), São Paulo Research Foundation
886 (FAPESP). GDAG. was supported by a fellowship from the Young Scientist program,
887 Hospital Sírio-Libanês. It was also partially supported by funds from CNPq (PAFG,
888 AAC), Serrapilheira Foundation (PAFG and AB), and Hospital Sírio-Libanês to PAFG
889 and AAC.

890

891 **AUTHOR CONTRIBUTIONS**

892 G.D.A.G., CH dos A, and P.A.F.G. developed the concepts in this study. P.A.F.G.
 893 supervised the study. Analyses were performed by G.D.A.G. and CH dos A. The
 894 manuscript was written by G.D.A.G., CH dos A, and P.A.F.G. with contributions and
 895 revisions from all authors.
 896

897 **REFERENCES**

898 Aganezov S, Goodwin S, Sherman RM, Sedlazeck FJ, Arun G, Bhatia S, Lee I, Kirsche M,
 899 Wappel R, Kramer M, et al. 2020. Comprehensive analysis of structural variants in breast
 900 cancer genomes using single-molecule sequencing. *Genome Res* **30**: 1258–1273.

901 Arribas J, Baselga J, Pedersen K, Parra-Palau JL. 2011. p95HER2 and breast cancer. *Cancer Res*
 902 **71**: 1515–1519.

903 Arteaga CL, Engelman JA. 2014. ERBB receptors: from oncogene discovery to basic science to
 904 mechanism-based cancer therapeutics. *Cancer Cell* **25**: 282–303.

905 Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A. 2024. Global
 906 cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36
 907 cancers in 185 countries. *CA Cancer J Clin* **74**: 229–263.

908 Bray NL, Pimentel H, Melsted P, Pachter L. 2016. Near-optimal probabilistic RNA-seq
 909 quantification. *Nat Biotechnol* **34**: 525–527.

910 Cancer Genome Atlas Network. 2012. Comprehensive molecular portraits of human breast
 911 tumours. *Nature* **490**: 61–70.

912 Castagnoli L, Iezzi M, Ghedini GC, Ciravolo V, Marzano G, Lamolinara A, Zappasodi R, Gasparini
 913 P, Campiglio M, Amici A, et al. 2014. Activated d16HER2 homodimers and SRC kinase
 914 mediate optimal efficacy for trastuzumab. *Cancer Res* **74**: 6248–6259.

915 Cho H-S, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney DW Jr, Leahy DJ. 2003.
 916 Structure of the extracellular region of HER2 alone and in complex with the Herceptin
 917 Fab. *Nature* **421**: 756–760.

918 Cizkova M, Dujaric M-E, Lehmann-Che J, Scott V, Tembo O, Asselain B, Pierga J-Y, Marty M, de
 919 Cremoux P, Spyros F, et al. 2013. Outcome impact of PIK3CA mutations in HER2-
 920 positive breast cancer patients treated with trastuzumab. *Br J Cancer* **108**: 1807–1809.

921 Demircioğlu D, Cukuroglu E, Kindermans M, Nandi T, Calabrese C, Fonseca NA, Kahles A,
 922 Lehmann K-V, Stegle O, Brazma A, et al. 2019. A Pan-cancer Transcriptome Analysis
 923 Reveals Pervasive Regulation through Alternative Promoters. *Cell* **178**: 1465–1477.e17.

924 Duan N, Hua Y, Yan X, He Y, Zeng T, Gong J, Fu Z, Li W, Yin Y. 2024. Unveiling Alterations of
 925 Epigenetic Modifications and Chromatin Architecture Leading to Lipid Metabolic
 926 Reprogramming during the Evolutionary Trastuzumab Adaptation of HER2-Positive
 927 Breast Cancer. *Adv Sci (Weinh)* **11**: e2309424.

928 Dvinge H, Guenthoer J, Porter PL, Bradley RK. 2019. RNA components of the spliceosome
 929 regulate tissue- and cancer-specific alternative splicing. *Genome Res* **29**: 1591–1604.

930 Frankish A, Diekhans M, Ferreira A-M, Johnson R, Jungreis I, Loveland J, Mudge JM, Sisu C,
 931 Wright J, Armstrong J, et al. 2019. GENCODE reference annotation for the human and
 932 mouse genomes. *Nucleic Acids Res* **47**: D766–D773.

933 Gedik ME, Saatci O, Oberholtzer N, Uner M, Akbulut Caliskan O, Cetin M, Aras M, Ibis K,
 934 Caliskan B, Banoglu E, et al. 2024. Targeting TACC3 Induces Immunogenic Cell Death and
 935 Enhances T-DM1 Response in HER2-Positive Breast Cancer. *Cancer Res* **84**: 1475–1490.

936 Gordon SP, Tseng E, Salamov A, Zhang J, Meng X, Zhao Z, Kang D, Underwood J, Grigoriev IV,
 937 Figueroa M, et al. 2015. Widespread Polycistronic Transcripts in Fungi Revealed by Single-
 938 Molecule mRNA Sequencing. *PLoS One* **10**: e0132628.

939 Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D,
 940 Li B, Lieber M, et al. 2013. De novo transcript sequence reconstruction from RNA-seq
 941 using the Trinity platform for reference generation and analysis. *Nat Protoc* **8**: 1494–1512.

942 Hallgren J, Tsirigos KD, Pedersen MD, Armenteros JJA, Marcatili P, Nielsen H, Krogh A,
 943 Winther O. 2022. DeepTMHMM predicts alpha and beta transmembrane proteins using
 944 deep neural networks. *bioRxiv* 2022.04.08.487609.
 945 <https://www.biorxiv.org/content/10.1101/2022.04.08.487609v1.abstract> (Accessed April 30,
 946 2024).

947 Jagannatha P, Tankka AT, Lorenz DA, Yu T, Yee BA, Brannan KW, Zhou CJ, Underwood JG, Yeo
 948 GW. 2024. Long-read Ribo-STAMP simultaneously measures transcription and translation
 949 with isoform resolution. *Genome Res* **34**: 2012–2024.

950 Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates
 951 R, Žídek A, Potapenko A, et al. 2021. Highly accurate protein structure prediction with
 952 AlphaFold. *Nature* **596**: 583–589.

953 Kaur G, Perteghella T, Carbonell-Sala S, Gonzalez-Martinez J, Hunt T, Mądry T, Jungreis I,
 954 Arnan C, Lagarde J, Borsari B, et al. 2024. GENCODE: massively expanding the lncRNA
 955 catalog through capture long-read RNA sequencing. *bioRxiv*.
 956 <http://dx.doi.org/10.1101/2024.10.29.620654>.

957 Kwong KY, Hung MC. 1998. A novel splice variant of HER2 with increased transformation
 958 activity. *Mol Carcinog* **23**: 62–68.

959 Lee DSM, Park J, Kromer A, Baras A, Rader DJ, Ritchie MD, Ghanem LR, Barash Y. 2021.
 960 Disrupting upstream translation in mRNAs is associated with human disease. *Nat
 961 Commun* **12**: 1515.

962 Loi S, Pommey S, Haibe-Kains B, Beavis PA, Darcy PK, Smyth MJ, Stagg J. 2013. CD73
 963 promotes anthracycline resistance and poor prognosis in triple negative breast cancer.
 964 *Proc Natl Acad Sci U S A* **110**: 11091–11096.

965 Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for
 966 RNA-seq data with DESeq2. *Genome Biol* **15**: 550.

967 Luque-Cabal M, García-Teijido P, Fernández-Pérez Y, Sánchez-Lorenzo L, Palacio-Vázquez I.
 968 2016. Mechanisms behind the resistance to trastuzumab in HER2-amplified breast cancer
 969 and strategies to overcome it. *Clin Med Insights Oncol* **10**: 21–30.

970 Marcelino Meliso F, Hubert CG, Favoretto Galante PA, Penalva LO. 2017. RNA processing as an
971 alternative route to attack glioblastoma. *Hum Genet* **136**: 1129–1141.

972 Marín A, Maman AA, Patel H, Akamatsu H, Ye D, Sudhan DR, Eli L, Marcelain K, Brown BP,
973 Meiler J, et al. 2023. Acquired secondary HER2 mutations enhance HER2/MAPK signaling
974 and promote resistance to HER2 kinase inhibition in breast cancer. *Cancer Res* **83**: 3145–
975 3158.

976 Mayr C. 2017. Regulation by 3'-untranslated regions. *Annu Rev Genet* **51**: 171–194.

977 Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. 2022. ColabFold:
978 making protein folding accessible to all. *Nat Methods* **19**: 679–682.

979 Mishra R, Patel H, Alanazi S, Yuan L, Garrett JT. 2018. HER3 signaling and targeted therapy in
980 cancer. *Oncol Rev* **12**: 355.

981 Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, Tosatto SCE,
982 Paladin L, Raj S, Richardson LJ, et al. 2021. Pfam: The protein families database in 2021.
983 *Nucleic Acids Res* **49**: D412–D419.

984 Mitra D, Brumlik MJ, Okamgba SU, Zhu Y, Duplessis TT, Parvani JG, Lesko SM, Brogi E, Jones
985 FE. 2009. An oncogenic isoform of HER2 associated with locally disseminated breast
986 cancer and trastuzumab resistance. *Mol Cancer Ther* **8**: 2152–2162.

987 Moasser MM. 2007. The oncogene HER2: its signaling and transforming functions and its role
988 in human cancer pathogenesis. *Oncogene* **26**: 6469–6487.

989 Modi S, Saura C, Yamashita T, Park YH, Kim S-B, Tamura K, Andre F, Iwata H, Ito Y, Tsurutani J,
990 et al. 2020. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. *N
991 Engl J Med* **382**: 610–621.

992 Molina MA, Codony-Servat J, Albanell J, Rojo F, Arribas J, Baselga J. 2001. Trastuzumab
993 (herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and
994 activated Her2 ectodomain cleavage in breast cancer cells. *Cancer Res* **61**: 4744–4749.

995 Mukund K, Alva-Ornelas JA, Maddox AL, Murali D, Veraksa D, Saftics A, Tomsic J, Frankhouser
996 D, Razo M, Jovanovic-Talisman T, et al. 2024. Molecular Atlas of HER2+ Breast Cancer Cells
997 Treated with Endogenous Ligands: Temporal Insights into Mechanisms of Trastuzumab
998 Resistance. *Cancers (Basel)* **16**. <http://dx.doi.org/10.3390/cancers16030553>.

999 Nagata Y, Lan K-H, Zhou X, Tan M, Esteva FJ, Sahin AA, Klos KS, Li P, Monia BP, Nguyen NT, et
1000 al. 2004. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of
1001 PTEN predicts trastuzumab resistance in patients. *Cancer Cell* **6**: 117–127.

1002 Nahta R, Esteva FJ. 2006. HER2 therapy: molecular mechanisms of trastuzumab resistance.
1003 *Breast Cancer Res* **8**: 215.

1004 Nilsen TW, Graveley BR. 2010. Expansion of the eukaryotic proteome by alternative splicing.
1005 *Nature* **463**: 457–463.

1006 Ødum MT, Teufel F, Thumuluri V, Almagro Armenteros JJ, Johansen AR, Winther O, Nielsen H.
1007 2024. DeepLoc 2.1: multi-label membrane protein type prediction using protein language
1008 models. *Nucleic Acids Res*. <http://dx.doi.org/10.1093/nar/gkae237>.

1009 Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. 2008. Deep surveying of alternative splicing

1010 complexity in the human transcriptome by high-throughput sequencing. *Nat Genet* **40**:
 1011 1413–1415.

1012 Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen
 1013 H, Akslen LA, et al. 2000. Molecular portraits of human breast tumours. *Nature* **406**: 747–
 1014 752.

1015 Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, Gianni L,
 1016 Baselga J, Bell R, Jackisch C, et al. 2005. Trastuzumab after adjuvant chemotherapy in
 1017 HER2-positive breast cancer. *N Engl J Med* **353**: 1659–1672.

1018 Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD. 2018. HMMER web server: 2018
 1019 update. *Nucleic Acids Res* **46**: W200–W204.

1020 Prat A, Lluch A, Turnbull AK, Dunbier AK, Calvo L, Albanell J, de la Haba-Rodríguez J, Arcusa A,
 1021 Chacón JI, Sánchez-Rovira P, et al. 2017. A PAM50-based chemoendocrine score for
 1022 hormone receptor-positive breast cancer with an intermediate risk of relapse. *Clin
 1023 Cancer Res* **23**: 3035–3044.

1024 Reixachs-Solé M, Eyras E. 2022. Uncovering the impacts of alternative splicing on the
 1025 proteome with current omics techniques. *Wiley Interdiscip Rev RNA* **13**: e1707.

1026 Roma-Rodrigues C, Raposo LR, Cabral R, Paradinha F, Baptista PV, Fernandes AR. 2017.
 1027 Tumor microenvironment modulation via gold nanoparticles targeting malicious
 1028 exosomes: Implications for cancer diagnostics and therapy. *Int J Mol Sci* **18**: 162.

1029 Scaltriti M, Rojo F, Ocaña A, Anido J, Guzman M, Cortes J, Di Cosimo S, Matias-Guiu X, Ramon
 1030 y Cajal S, Arribas J, et al. 2007. Expression of p95HER2, a truncated form of the HER2
 1031 receptor, and response to anti-HER2 therapies in breast cancer. *J Natl Cancer Inst* **99**:
 1032 628–638.

1033 Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. 1987. Human breast cancer:
 1034 correlation of relapse and survival with amplification of the HER-2/neu oncogene. *Science*
 1035 **235**: 177–182.

1036 Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann
 1037 W, Wolter J, Pegram M, et al. 2001. Use of chemotherapy plus a monoclonal antibody
 1038 against HER2 for metastatic breast cancer that overexpresses HER2. *N Engl J Med* **344**:
 1039 783–792.

1040 Soneson C, Love MI, Robinson MD. 2015. Differential analyses for RNA-seq: transcript-level
 1041 estimates improve gene-level inferences. *F1000Res* **4**: 1521.

1042 Sonnenblick A, Salmon-Divon M, Salgado R, Dvash E, Pondé N, Zahavi T, Salmon A, Loibl S,
 1043 Denkert C, Joensuu H, et al. 2020. Reactive stroma and trastuzumab resistance in HER2-
 1044 positive early breast cancer. *Int J Cancer* **147**: 266–276.

1045 Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M,
 1046 Jeffrey SS, et al. 2001. Gene expression patterns of breast carcinomas distinguish tumor
 1047 subclasses with clinical implications. *Proc Natl Acad Sci U S A* **98**: 10869–10874.

1048 Steinegger M, Meier M, Mirdita M, Vöhringer H, Haunsberger SJ, Söding J. 2019. HH-suite3 for
 1049 fast remote homology detection and deep protein annotation. *BMC Bioinformatics* **20**:
 1050 473.

1051 Steinegger M, Söding J. 2017. MMseqs2 enables sensitive protein sequence searching for the
1052 analysis of massive data sets. *Nat Biotechnol* **35**: 1026–1028.

1053 Sveen A, Kilpinen S, Ruusulehto A, Lothe RA, Skotheim RI. 2016. Aberrant RNA splicing in
1054 cancer; expression changes and driver mutations of splicing factor genes. *Oncogene* **35**:
1055 2413–2427.

1056 Swain SM, Baselga J, Kim S-B, Ro J, Semiglazov V, Campone M, Ciruelos E, Ferrero J-M,
1057 Schneeweiss A, Heeson S, et al. 2015. Pertuzumab, trastuzumab, and docetaxel in HER2-
1058 positive metastatic breast cancer. *N Engl J Med* **372**: 724–734.

1059 Tarantino P, Hamilton E, Tolaney SM, Cortes J, Morganti S, Ferraro E, Marra A, Viale G, Trapani
1060 D, Cardoso F, et al. 2020. HER2-low breast cancer: Pathological and clinical landscape. *J*
1061 *Clin Oncol* **38**: 1951–1962.

1062 Tardaguila M, de la Fuente L, Martí C, Pereira C, Pardo-Palacios FJ, Del Risco H, Ferrell M,
1063 Mellado M, Macchietto M, Verheggen K, et al. 2018. SQANTI: extensive characterization of
1064 long-read transcript sequences for quality control in full-length transcriptome
1065 identification and quantification. *Genome Res* **28**: 396–411.

1066 Trincado JL, Entizne JC, Hysenaj G, Singh B, Skalic M, Elliott DJ, Eyras E. 2018. SUPPA2: fast,
1067 accurate, and uncertainty-aware differential splicing analysis across multiple conditions.
1068 *Genome Biol* **19**: 40.

1069 Turpin J, Ling C, Crosby EJ, Hartman ZC, Simond AM, Chodosh LA, Rennhack JP, Andrechek
1070 ER, Ozcelik J, Hallett M, et al. 2016. The ErbB2ΔEx16 splice variant is a major oncogenic
1071 driver in breast cancer that promotes a pro-metastatic tumor microenvironment.
1072 *Oncogene* **35**: 6053–6064.

1073 Uapinyoying P, Goecks J, Knoblauch SM, Panchapakesan K, Bonnemann CG, Partridge TA,
1074 Jaiswal JK, Hoffman EP. 2020. A long-read RNA-seq approach to identify novel transcripts
1075 of very large genes. *Genome Res* **30**: 885–897.

1076 Uhlén M, Fagerberg L, Hallström BM, Lindsjöö C, Oksvold P, Mardinoglu A, Sivertsson Å,
1077 Kampf C, Sjöstedt E, Asplund A, et al. 2015. Proteomics. Tissue-based map of the human
1078 proteome. *Science* **347**: 1260419.

1079 Vander Velde R, Yoon N, Marusyk V, Durmaz A, Dhawan A, Miroshnychenko D, Lozano-Peral
1080 D, Desai B, Balyntseva O, Poleszhuk J, et al. 2020. Resistance to targeted therapies as a
1081 multifactorial, gradual adaptation to inhibitor specific selective pressures. *Nat Commun*
1082 **11**: 2393.

1083 Varadi M, Bertoni D, Magana P, Paramval U, Pidruchna I, Radhakrishnan M, Tsenkov M, Nair S,
1084 Mirdita M, Yeo J, et al. 2024. AlphaFold Protein Structure Database in 2024: providing
1085 structure coverage for over 214 million protein sequences. *Nucleic Acids Res* **52**: D368–
1086 D375.

1087 Veiga DFT, Nesta A, Zhao Y, Deslattes Mays A, Huynh R, Rossi R, Wu T-C, Palucka K, Anczukow
1088 O, Beck CR, et al. 2022. A comprehensive long-read isoform analysis platform and
1089 sequencing resource for breast cancer. *Sci Adv* **8**: eabg6711.

1090 Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, Pegram M, Oh D-Y, Diéras V,
1091 Guardino E, et al. 2012. Trastuzumab emtansine for HER2-positive advanced breast
1092 cancer. *N Engl J Med* **367**: 1783–1791.

1093 Vernieri C, Milano M, Brambilla M, Mennitto A, Maggi C, Cona MS, Prisciandaro M, Fabbroni C,
 1094 Celio L, Mariani G, et al. 2019. Resistance mechanisms to anti-HER2 therapies in HER2-
 1095 positive breast cancer: Current knowledge, new research directions and therapeutic
 1096 perspectives. *Crit Rev Oncol Hematol* **139**: 53–66.

1097 von Minckwitz G, Procter M, de Azambuja E, Zardavas D, Benyunes M, Viale G, Suter T,
 1098 Arahmani A, Rouchet N, Clark E, et al. 2017. Adjuvant pertuzumab and trastuzumab in
 1099 early HER2-positive breast cancer. *N Engl J Med* **377**: 122–131.

1100 Wang E, Aifantis I. 2020. RNA splicing and cancer. *Trends Cancer* **6**: 631–644.

1101 Wang Y, Xie Z, Kutschera E, Adams JI, Kadash-Edmondson KE, Xing Y. 2024. rMATS-turbo: an
 1102 efficient and flexible computational tool for alternative splicing analysis of large-scale
 1103 RNA-seq data. *Nat Protoc* **19**: 1083–1104.

1104 Wen B, Zhang B. 2023. PepQuery2 democratizes public MS proteomics data for rapid peptide
 1105 searching. *Nat Commun* **14**: 1–13.

1106 Wolff AC, Hammond MEH, Hicks DG, Dowsett M, McShane LM, Allison KH, Allred DC, Bartlett
 1107 JMS, Bilous M, Fitzgibbons P, et al. 2013. Recommendations for human epidermal growth
 1108 factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College
 1109 of American Pathologists clinical practice guideline update. *J Clin Oncol* **31**: 3997–4013.

1110 Wu TD, Watanabe CK. 2005. GMAP: a genomic mapping and alignment program for mRNA
 1111 and EST sequences. *Bioinformatics* **21**: 1859–1875.

1112 Yang Q, Zhao J, Zhang W, Chen D, Wang Y. 2019. Aberrant alternative splicing in breast
 1113 cancer. *J Mol Cell Biol* **11**: 920–929.

1114 Yarden Y, Sliwkowski MX. 2001. Untangling the ErbB signalling network. *Nat Rev Mol Cell Biol*
 1115 **2**: 127–137.

1116 Young SK, Wek RC. 2016. Upstream open reading frames differentially regulate gene-specific
 1117 translation in the integrated stress response. *J Biol Chem* **291**: 16927–16935.

1118 Zhang M, Sjöström M, Cui X, Foye A, Farh K, Shrestha R, Lundberg A, Dang HX, Li H, Febbo PG,
 1119 et al. 2024. Integrative analysis of ultra-deep RNA-seq reveals alternative promoter usage
 1120 as a mechanism of activating oncogenic programmes during prostate cancer
 1121 progression. *Nat Cell Biol* **26**: 1176–1186.

1122

1123 **FIGURE LEGENDS**

1124 **Figure 1. A comprehensive strategy for investigating HER2 isoform diversity in breast**
 1125 **cancer. A)** Five-step approach to characterize HER2 splicing isoforms in breast cancer patients
 1126 and cell cultures: (1) Identification of HER2 splicing isoforms, (2) *In silico* characterization of
 1127 HER2 protein variants, (3) HER2 isoform expression profiling by breast cancer subtype, (4)
 1128 Analysis of antibody-drug conjugate (ADC) sensitivity across HER2 isoform profiles, and (5)

1129 Examination of *HER2* isoform switches in ADC-induced resistance. **B)** RNA-sequenced
1130 samples selection and stratification based on their technical (e.g., distinct library preparation
1131 strategies and low number of mapped reads) and biological characteristics (e.g., male samples
1132 were excluded and tumors with same HR status and *HER2* expression levels were grouped).

1133

1134 **Figure 2. Comprehensive analysis of *HER2* isoforms and their characteristics. A)** Structure
1135 of the *HER2* canonical isoform and its splicing variants. The top panel displays the canonical
1136 *HER2* isoform and alternative splicing events. The bottom panel illustrates the protein domains
1137 encoded by specific exons. **B)** Structural and functional properties of *HER2* isoform-encoded
1138 proteins. The top bars represent five characteristics of isoform-encoded proteins (e.g., cellular
1139 localizations, presence of trastuzumab and immunohistochemistry (IHC) binding regions,
1140 presence of complete protein domains and transmembrane topology: O = outside, TM =
1141 transmembrane region, I = inside, SP = signal peptide). The groups of isoform-encoded
1142 proteins (from 1 to 13), created based on those five characteristics, are discriminated above the
1143 top bars. Below the top bars, the isoforms p95 and Δ 16 are represented by "p" and " Δ ",
1144 respectively. The heatmap shows the presence (dark gray squares) or absence (light gray
1145 squares) of specific protein domain configurations (rows) for each isoform-encoded protein
1146 (column). Colored and lettered protein domain configurations are represented on the left side
1147 of the heatmap (L: Receptor L domain, F: Furin-like domain, G: Growth factor receptor domain,
1148 K: Protein kinase domain), with incomplete domains represented by segmented labels. On the
1149 right side of the heatmap, the total number of isoform-encoded proteins with each specific
1150 protein domain configuration is presented. Vertical dashed lines help to visualize relevant
1151 groups of isoform-encoded proteins which are described at the bottom of the heatmap.

1152

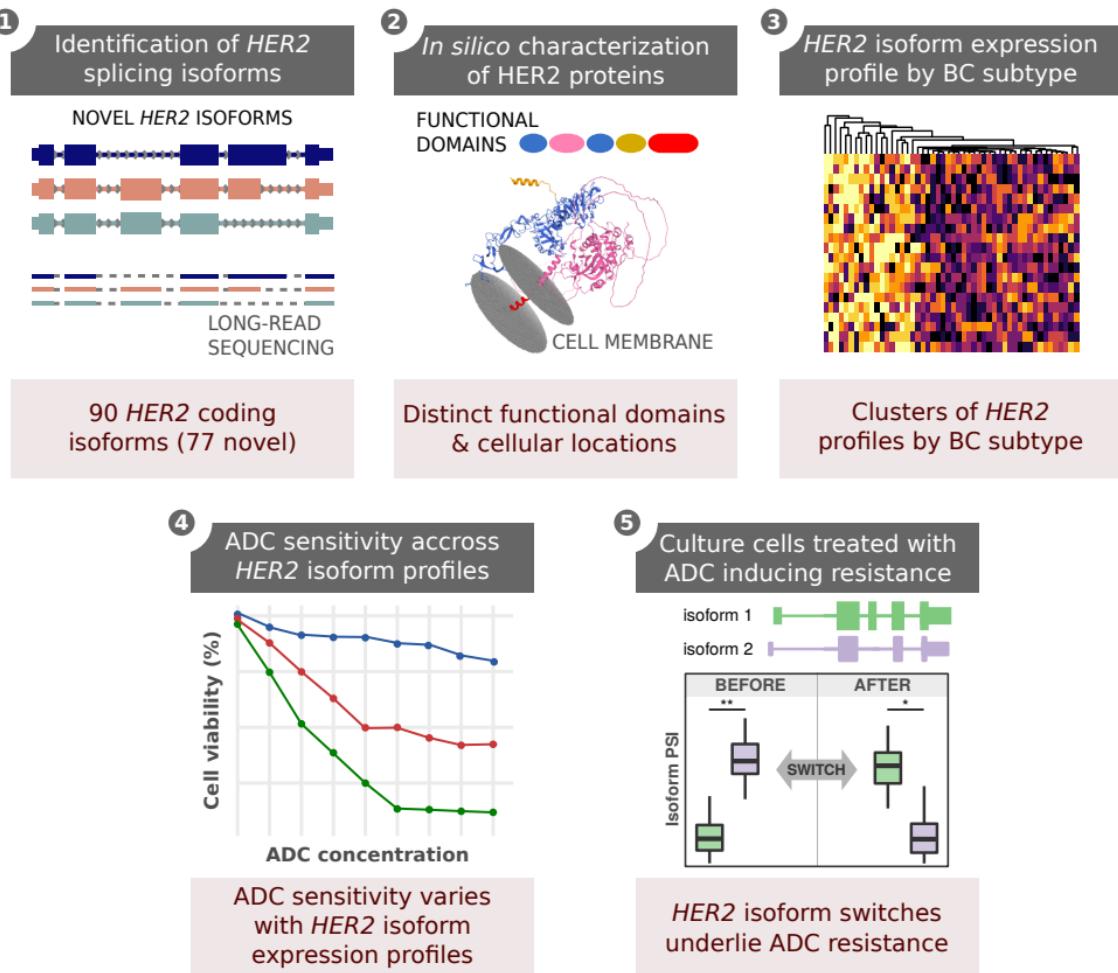
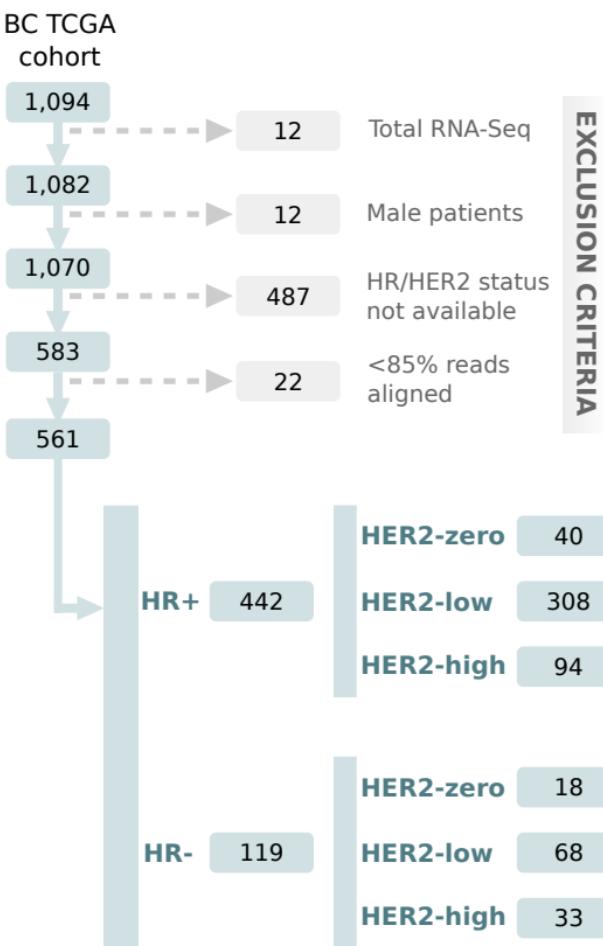
1153 **Figure 3. Expression profiles of *HER2* gene and splicing isoforms in breast cancer samples**
1154 **classified by immunohistochemistry status of *HER2* and hormone receptor. A-B)** *HER2*
1155 gene expression levels in **A)** HR+ and **B)** HR- breast cancer samples, stratified by *HER2*-high
1156 (red), *HER2*-low (green), and *HER2*-zero (blue) status. Mann-Whitney *U* test statistical
1157 significance: * *p*-value < 0.05, *** *p*-value < 0.001, **** *p*-value < 0.0001. **C-D)** Expression profiles
1158 of the top 10 most expressed *HER2* isoforms in **C)** HR+ and **D)** HR- breast cancer samples,
1159 stratified by *HER2* status. The canonical *HER2* isoform is highlighted in bold. Expression levels
1160 are shown in $\log_2(\text{TPM}+1)$. **E-F)** Dot plots showing the percentage of **E)** HR+ and **F)** HR- TCGA
1161 breast cancer samples expressing each *HER2* isoform group (ISO 1-13), stratified by *HER2* status
1162 - zero (blue), low (green), high(red).

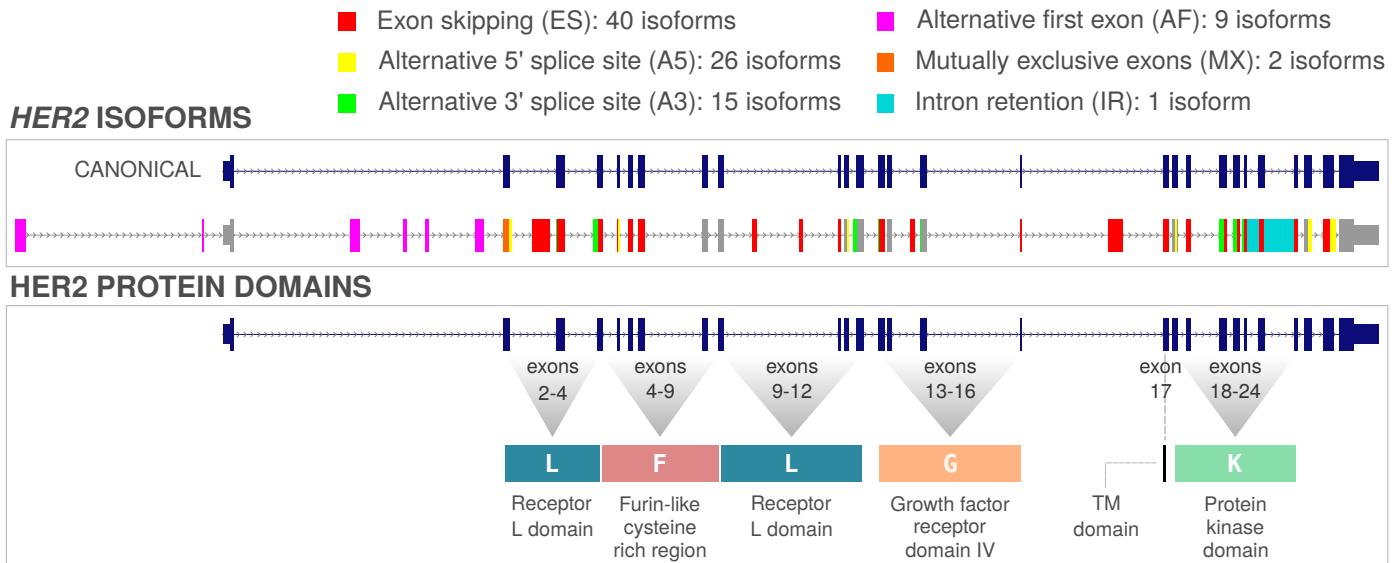
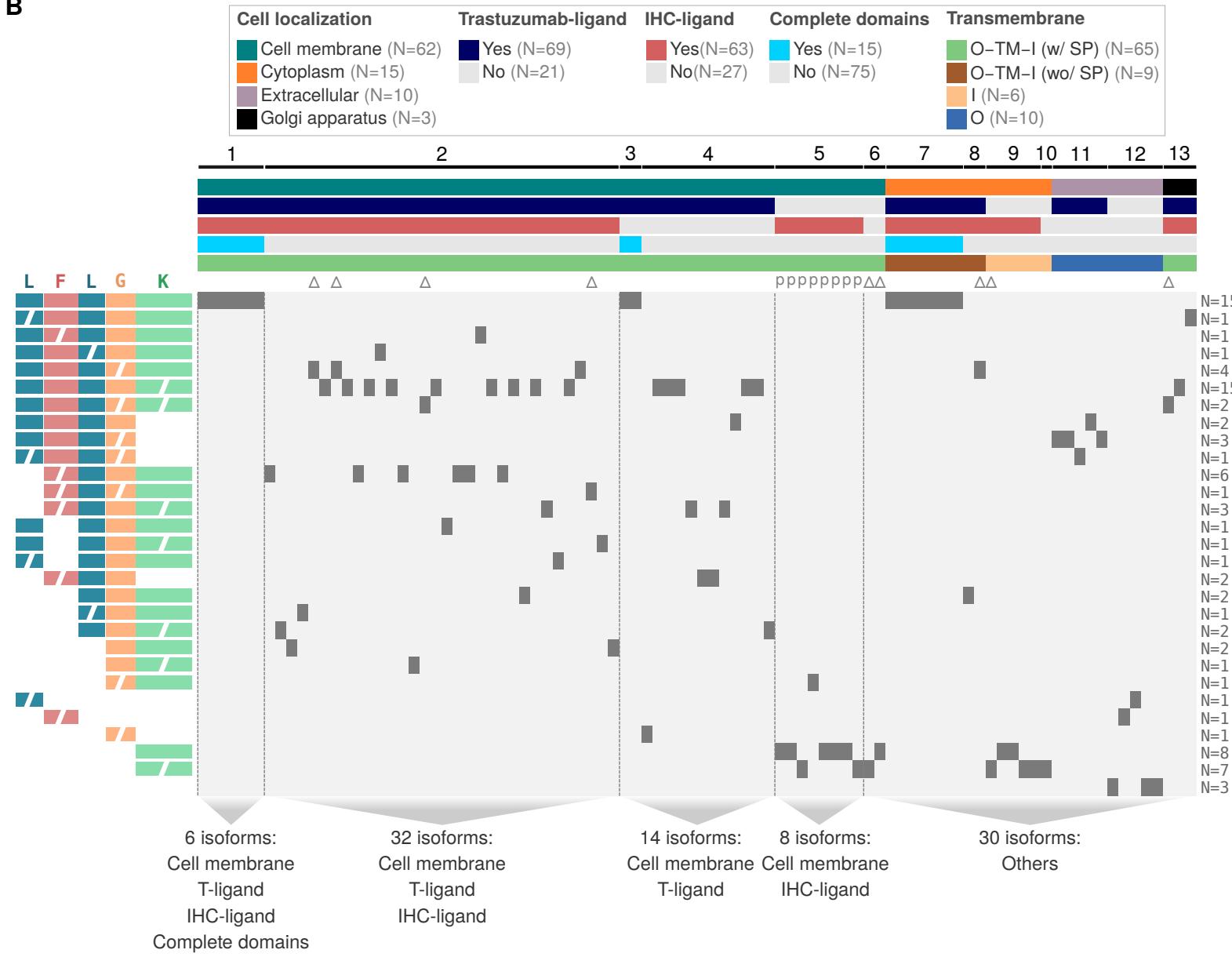
1163

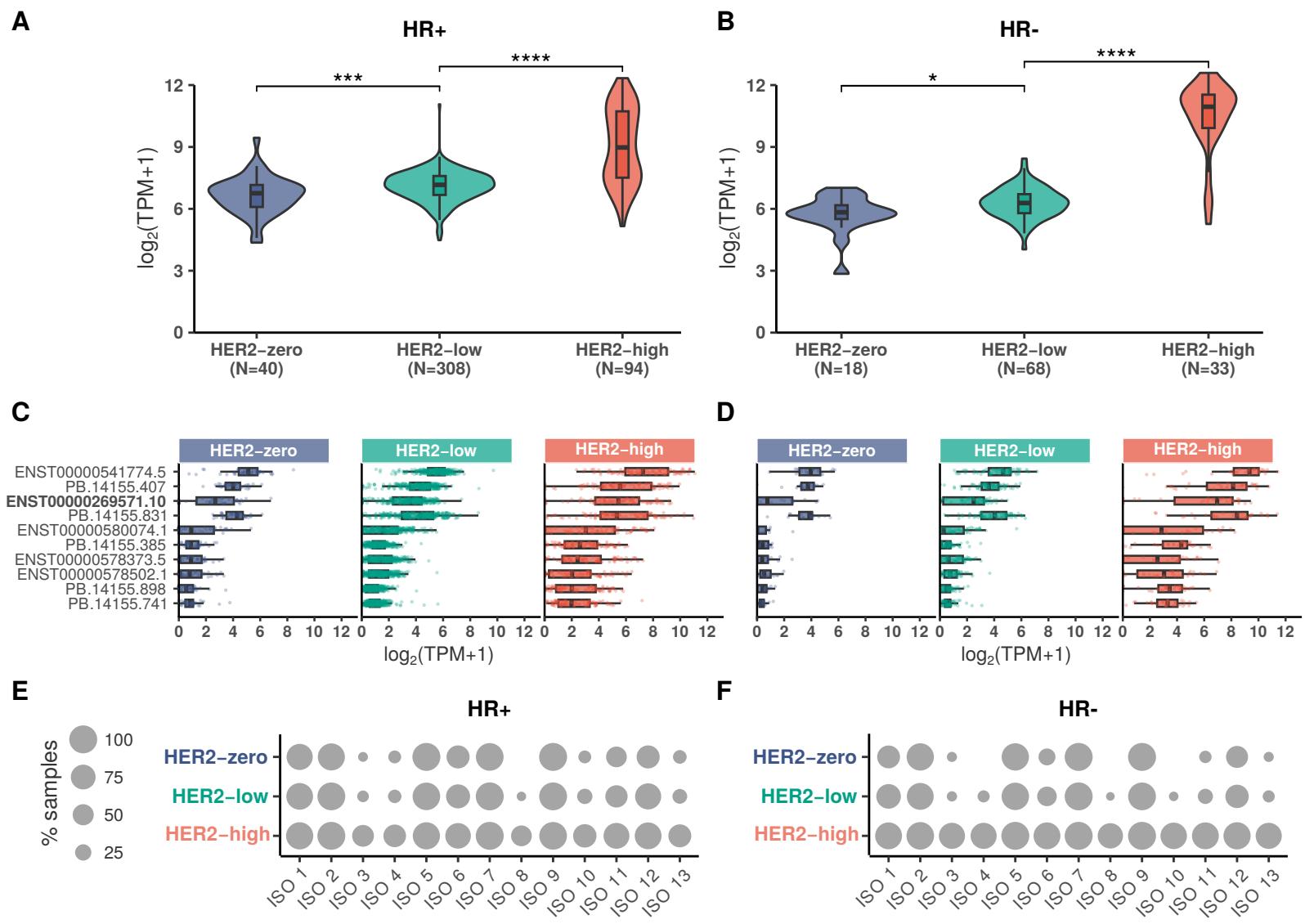
1164 **Figure 4. Mass spectrometry validation of *HER2* isoform-derived proteins and their**
1165 **predicted 3D structures. A)** The top panels display the number of samples with mass
1166 spectrometry (mass spec) confirmation of *HER2* proteins, stratified by *HER2* status (*HER2*-high,
1167 *HER2*-low, *HER2*-zero) and hormone receptor status (HR+ and HR-). Isoform-derived proteins
1168 are grouped from 1 to 13, and the validated peptides for each group are indicated in the lower
1169 panel. **B-D)** AlphaFold2-predicted protein structures for *HER2* isoforms **B)** shows the canonical
1170 isoform (ISO 1: ENST00000269571), with well-defined domain regions. **C)** displays ISO 5
1171 (PB.14155.141), a variant from Group 5 with specific domain alterations affecting its cellular
1172 localization and trastuzumab binding potential. **D)** represents ISO 9 (PB.14155.831), an isoform
1173 with unique structural characteristics lacking complete domains, potentially affecting
1174 functional properties. Color codes in each structure represent pLDDT confidence scores for
1175 structural predictions and the corresponding *HER2* protein domains, as the bottom legend
1176 indicates. Transmembrane: O = outside, TM = transmembrane region, I = inside, SP = signal
1177 peptide.

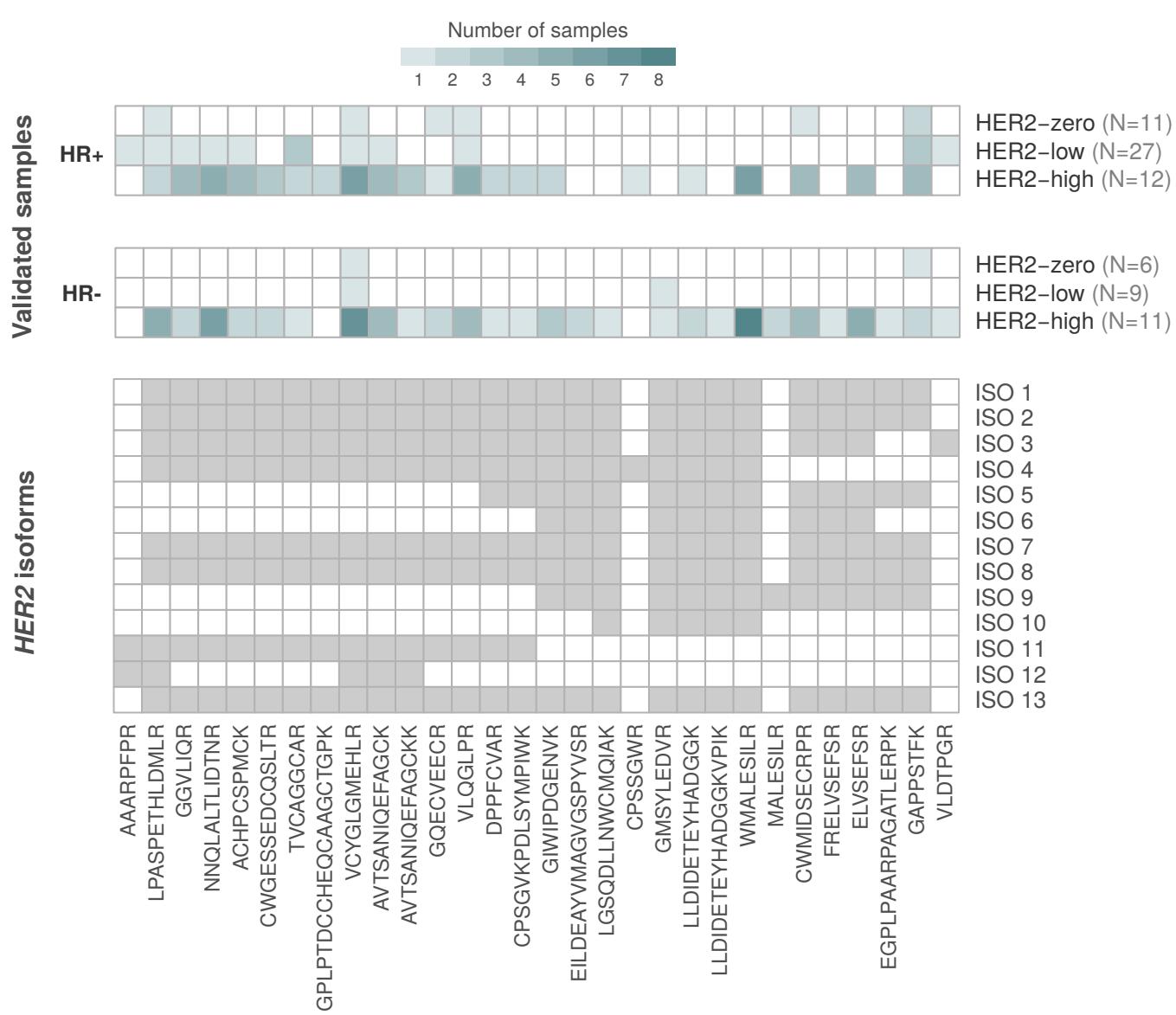
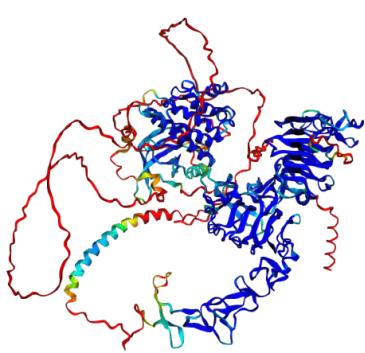
1178

1179 **Figure 5. HER2 isoform expression patterns and clustering analysis in HR- and HR+ breast**
1180 **cancer patients stratified by HER2 status. A)** Jaccard index comparing the dissimilarity of
1181 HER2 isoform expression between HER2-zero (blue), HER2-low (green), and HER2-high (red)
1182 breast cancer samples in hormone receptor-positive (HR+) and hormone receptor-negative
1183 (HR-) patients. Mann-Whitney *U* test significant differences in dissimilarity are noted between
1184 HER2 status categories (* *p*-value < 0.05, *** *p*-value < 0.0001). **B)** Heatmap of *HER2* isoform
1185 Percent Spliced In (PSI) levels in HR+ patients, clustered by expression similarity. Z1, Z2, Z3 for
1186 HER2-zero; L1, L2, L3 for HER2-low; H1, H2, H3 for HER2-high. Isoform features (cell localization,
1187 antibody binding sites, domain completeness and transmembrane topology: O = outside, TM
1188 = transmembrane region, I = inside, SP = signal peptide) are indicated on the right. **C)** *HER2*
1189 gene expression levels among HR+ patient clusters. **D)** Expression levels of *HER2* isoforms
1190 whose encoded proteins are located in the cell membrane and contain the trastuzumab-
1191 ligand (groups ISO 1-4) among HR+ patient clusters. Mann-Whitney *U* test statistical
1192 significance: * *p*-value < 0.05, ** *p*-value < 0.01, *** *p*-value < 0.0001. Comparisons without
1193 statistical significance are not depicted in the figure.



1194



1195 **Figure 6. HER2 splicing isoform profiles in breast cancer cell lines and their response to T-**
1196 **DM1 and T-DXd. A)** *HER2* isoform expression in HR+ (left) and HR- (right) breast cancer cell
1197 lines treated with T-DXd or T-DM1. Cell lines responsive to treatment are marked with a "check
1198 symbol." Unresponsive cell lines are marked with a cross symbol. If drug treatment is not
1199 available: "NA". The square block's color represents the total *HER2* expression level
1200 ($\log_2(\text{TPM}+1)$). Blue semi-circular plots indicate the expression of isoforms with intact
1201 trastuzumab-binding domain (ISO 1-4). Red semi-circular plots half circus represent the
1202 expression of isoforms lacking trastuzumab-binding domain and/or cell membrane
1203 localization (ISO 5-13). **B)** Scatter plot showing the relationship between expression levels of
1204 ISO 1-4 and ISO 5-13 groups across breast cancer cell lines. Dot size and color intensity
1205 correspond to total *HER2* expression level ($\log_2(\text{TPM}+1)$). Cell lines named in green indicate

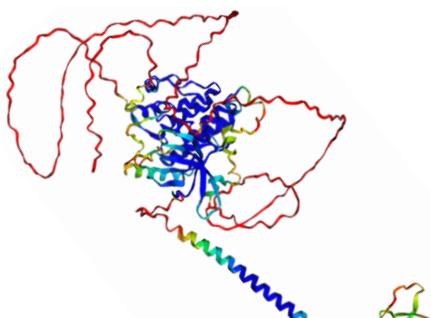

1206 those responsive to antibody-drug conjugates (ADCs: T-DM1 or T-DXd); Cell lines named in gray
1207 indicate those ADC-resistant. **C**) *HER2* isoform expression patterns across breast cancer cell
1208 lines (without ADC treatment) stratified by HR/HER2 status. Semi-circular plots represent
1209 expression levels of isoforms from groups 1-4 (blue) and 5-13 (red). The gray squares below
1210 indicate total *HER2* expression levels.



1211

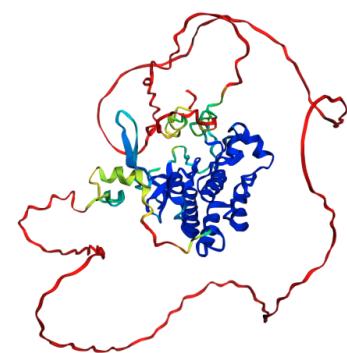
1212 **Figure 7. *HER2* gene and isoform expression profiles in breast cancer cell lines before and**
1213 **after acquiring resistance to *HER2*-targeted therapies. A)** Overall *HER2* expression in
1214 trastuzumab-sensitive (S) and -resistant (R) SK-BR-3 and BT-474 cells. **B)** \log_2 fold change of
1215 *HER2* isoform expression in trastuzumab-resistant vs. sensitive SK-BR-3 and BT-474 cells. **C)**
1216 Overall *HER2* expression in T-DM1-sensitive and -resistant SK-BR-3 cells. **D)** *HER2* isoform
1217 expression levels and characteristics in T-DM1-sensitive and -resistant SK-BR-3 cells, with \log_2
1218 fold change shown above. Isoforms are categorized based on their cell localization,
1219 trastuzumab-binding ligand presence (T-ligand), structural completeness and
1220 transmembrane topology: O = outside, TM = transmembrane region, I = inside, SP = signal
1221 peptide, as indicated by the bottom color legend. Mann-Whitney *U* test statistical significance:
1222 * *p*-value < 0.05, ** *p*-value < 0.01. Comparisons without statistical significance are not depicted
1223 in the figure.

A**B**

A**B**

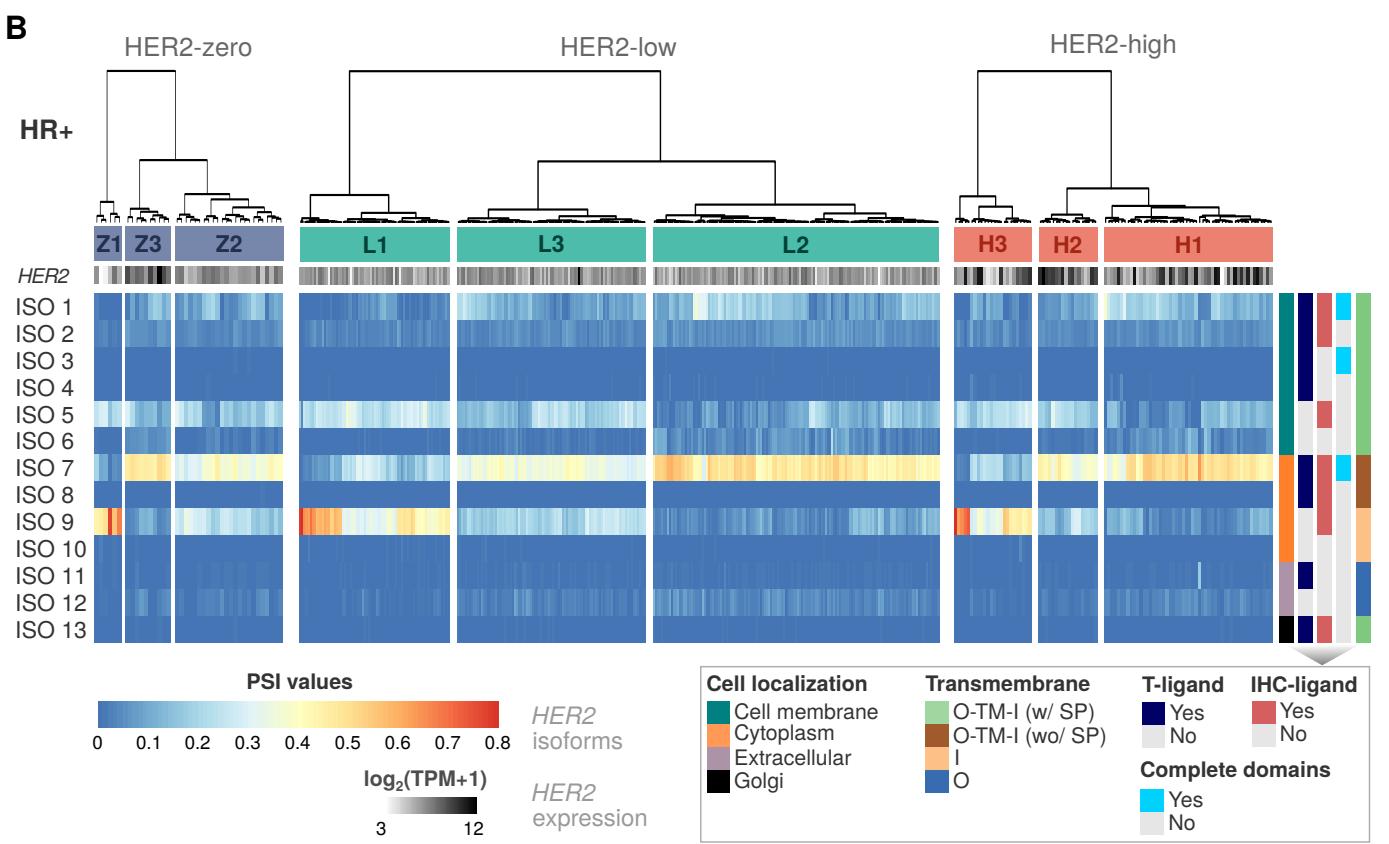
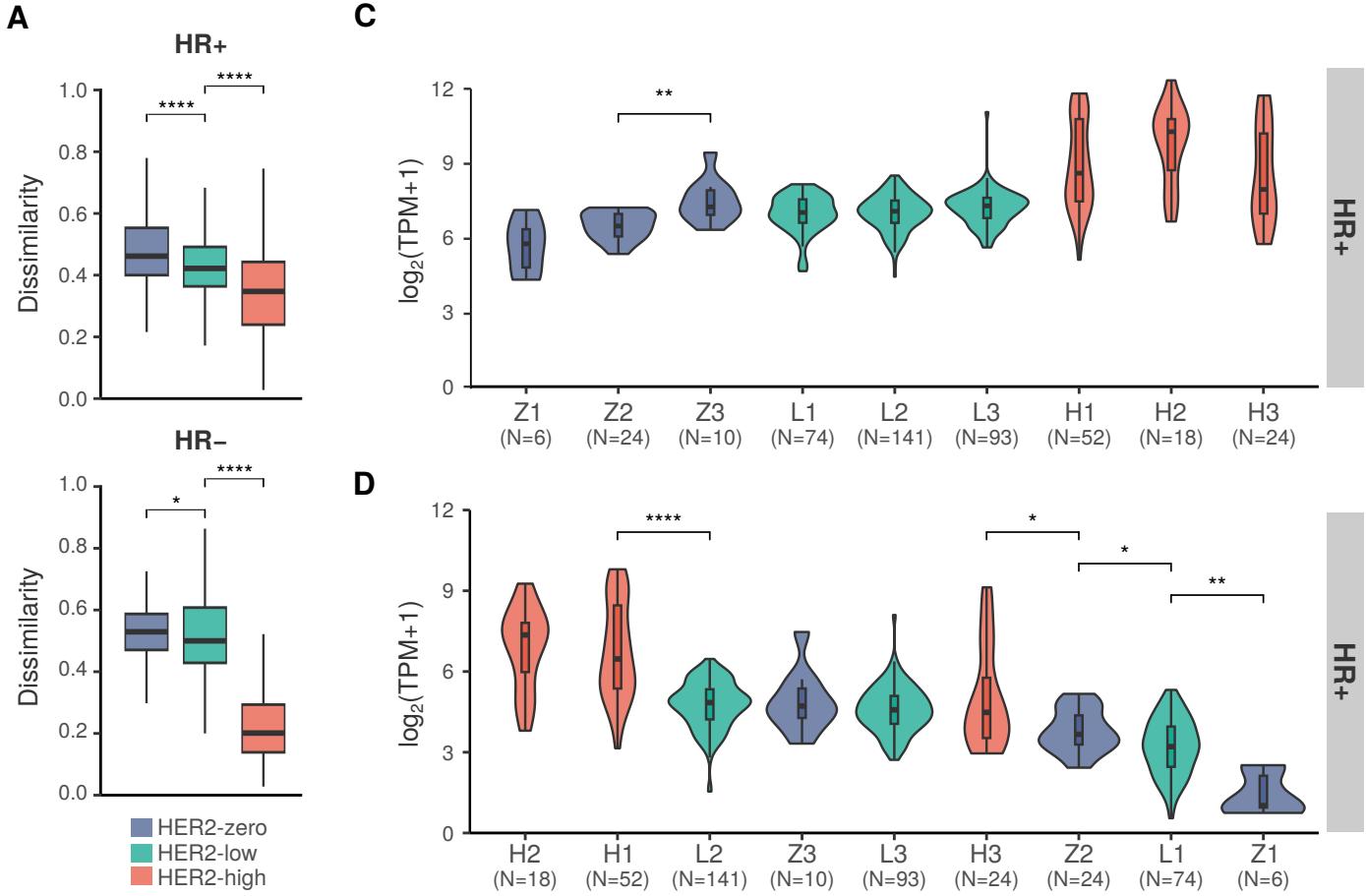


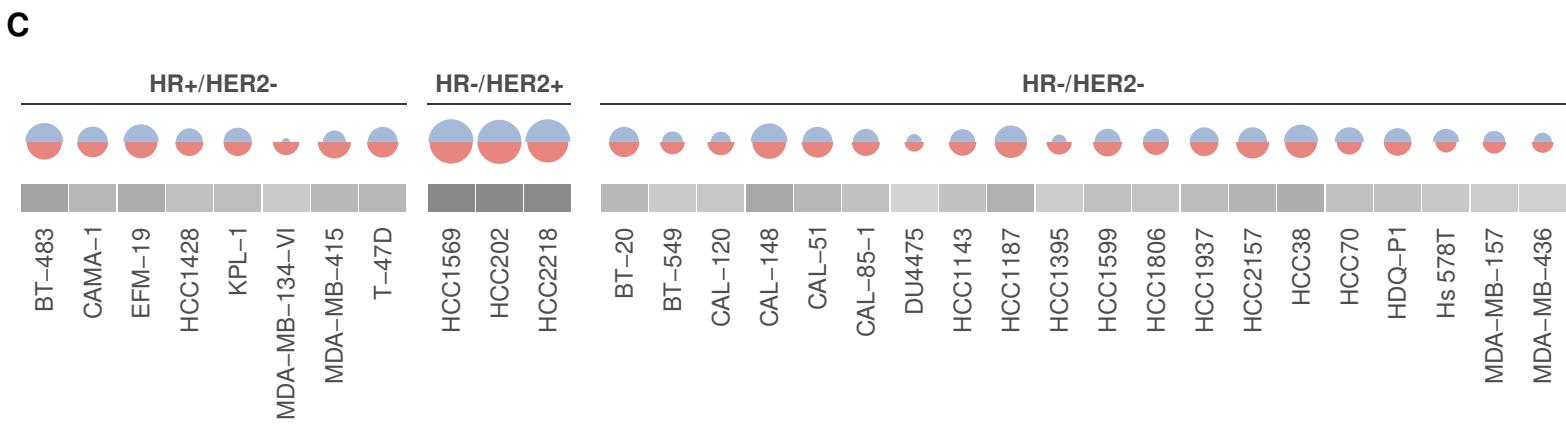
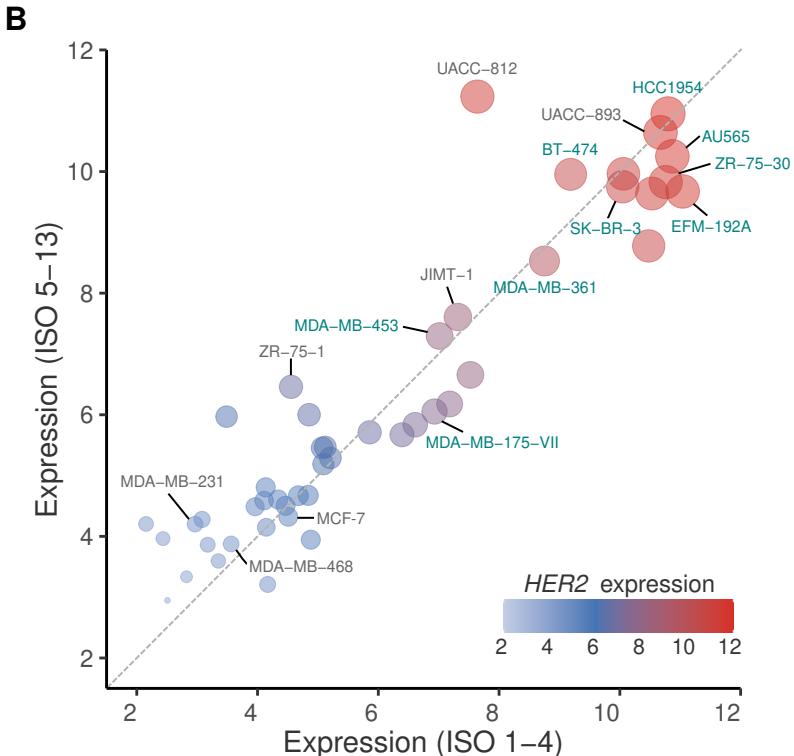
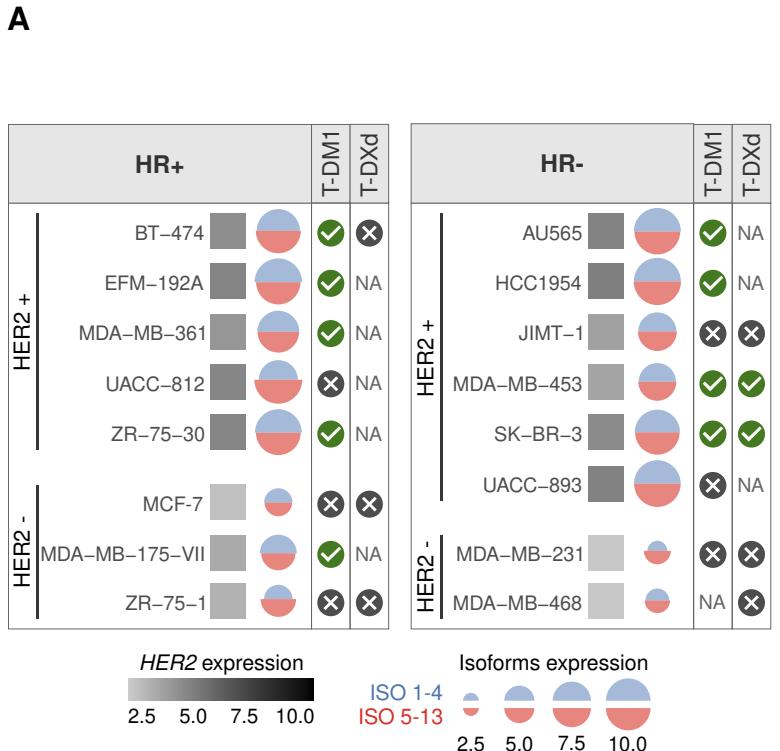
A**B**

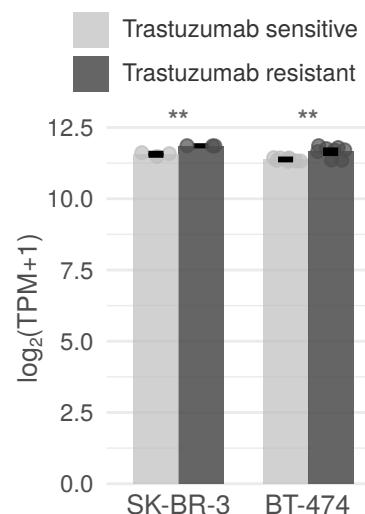
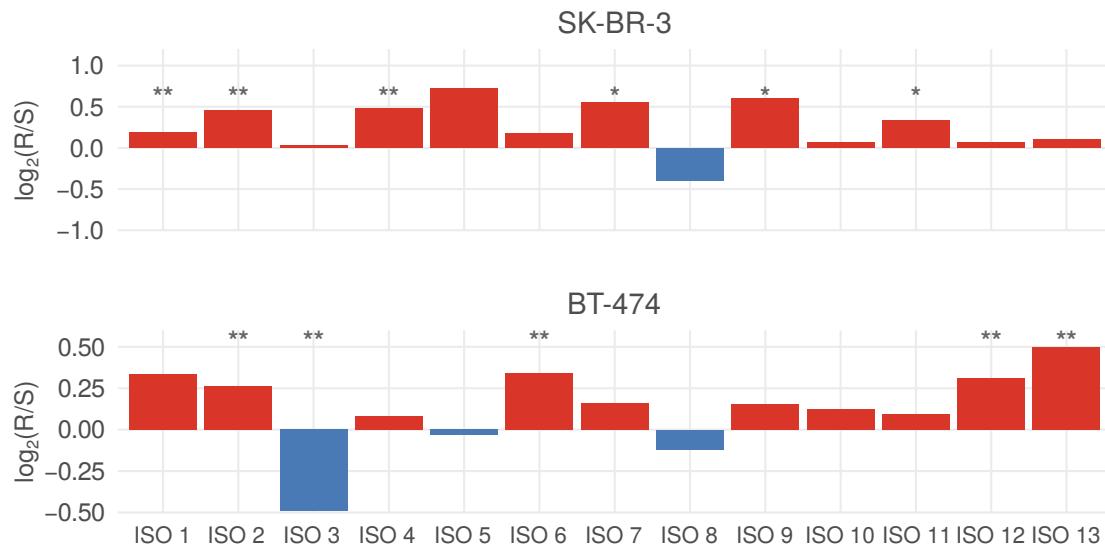
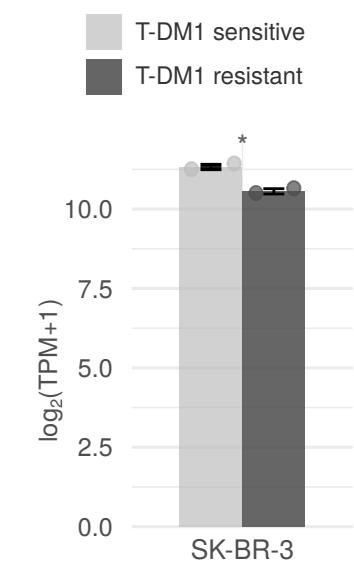
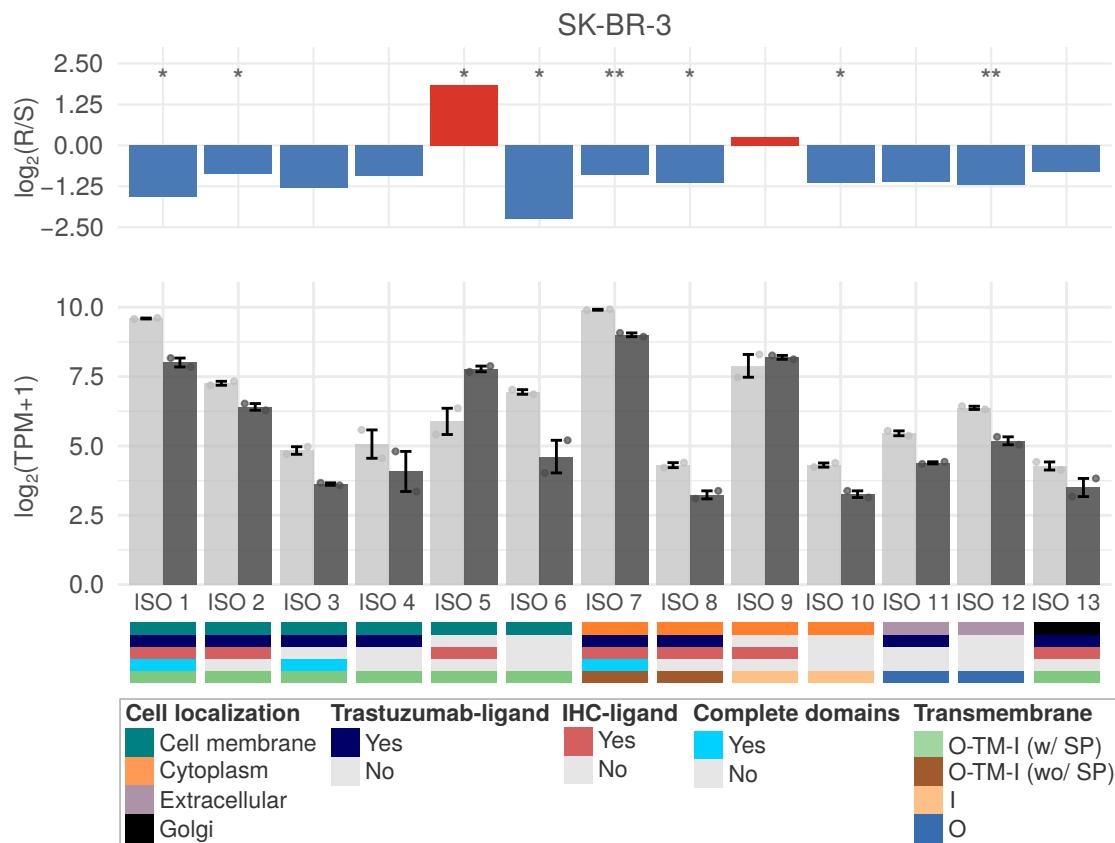

ISO 1: ENST00000269571.10

Very high (>90)	Confident (80)
OK (70)	Low (60)
Very low (<50)	

C



ISO 5: PB.14155.141




D





ISO 9: PB.14155.831

Cell localization	Trastuzumab-ligand	IHC-ligand	Complete domains	Transmembrane
Cell membrane	Yes	Yes	Yes	O-TM-I (w/ SP)
Cytoplasm	No	No	No	I

A**B****C****D**

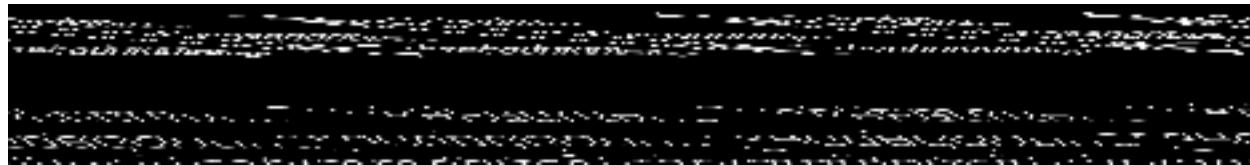
Alternative splicing generates HER2 isoform diversity underlying antibody-drug conjugate resistance in breast cancer

Gabriela D. A. Guardia, Carlos H dos Anjos, Aline Rangel-Pozzo, et al.

Genome Res. published online July 15, 2025

Access the most recent version at doi:[10.1101/gr.280304.124](https://doi.org/10.1101/gr.280304.124)

Supplemental Material <http://genome.cshlp.org/content/suppl/2025/07/29/gr.280304.124.DC1>


P<P Published online July 15, 2025 in advance of the print journal.

Accepted Manuscript Peer-reviewed and accepted for publication but not copyedited or typeset; accepted manuscript is likely to differ from the final, published version.

Creative Commons License This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see <https://genome.cshlp.org/site/misc/terms.xhtml>). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at <http://creativecommons.org/licenses/by-nc/4.0/>.

Email Alerting Service Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or [click here](#).

To subscribe to *Genome Research* go to:
<https://genome.cshlp.org/subscriptions>