Smith-Waterman at your fingertips. Supercomputer speed on your desktop. And it’s affordable. Very.

Introducing the only genetics supercomputing PC. Given the exponential growth of database size, scalable computing at the best price-performance is critical to your lab’s continued success. DeCypher II TCP/IP network servers expand over 100x and are orders of magnitude faster than your UNIX workstation. Considering what you’re now spending on sequencing, your data deserve the most sensitive search algorithm available, made affordable for the first time. Enhance your opportunity for discovery today... and tomorrow.

Sequencing is Nothing... Without Discovery

DeCypher II

CHECK OUR WEB SITE FOR OUR TRADE SHOW SCHEDULE

TIME LOGIC, INC.
Phone: 702.833.0200
Fax: 702.833.1222
E-mail: jiml@timelogic.com
Web Site: http://www.timelogic.com
567 Knotty Pine Dr., Incline Village, NV 89451
Eureka!!

My PCR works at last!

Now amplify even the most difficult template with the new MasterAmp™ Technology.

Epicentre’s unique new PCR products* incorporate MasterAmp™ PCR Enhancement Technology** to dramatically improve PCR performance. Even DNA that is very difficult to amplify, such as templates with high GC content or extensive secondary structure, is amplified using MasterAmp PCR Kits and PCR-Qualified Thermostable Enzymes.

Quickly optimize amplification conditions using the MasterAmp PCR Optimization Kit.

- It’s easy! Just add a mixture of template, primers, and PCR-Qualified enzyme to each ready-to-use PCR PreMix, and cycle. (Fig. 1)
- Once the optimal PCR PreMix is identified, it can be conveniently purchased separately for consistently high yields. (Fig. 2)

Other MasterAmp products include:
- MasterAmp PCR Core Kits with Taq or AmpliTherm™ DNA Polymerase.
- PCR-Qualified Enzymes with MasterAmp PCR Enhancer: Taq, Tfi, Tth, and the new AmpliTherm DNA Polymerase for reliable amplification of particularly difficult templates. Enzymes are available separately or in the MasterAmp PCR Enzyme Sample Kit.

Free! - Limited time offer
Receive 100 units each of AmpliTherm & Taq DNA Polymerases free with purchase of a 20-template size MasterAmp PCR Optimization Kit.
This offer is limited to 1 per customer.

Fig. 1. PCR of the human ApoE gene (75% GC). Lane 1, standard PCR (Taq); lanes A-L, PCR with each of the 12 MasterAmp 2X PCR PreMixes using AmpliTherm DNA Polymerase.

Fig. 2. Repeated PCR of the ApoE gene using MasterAmp PCR PreMix K (lane K, Fig. 1) and AmpliTherm DNA Polymerase.
WHERE IS GENOME RESEARCH ABSTRACTED AND/OR INDEXED?

Cambridge Scientific Abstracts
Chemical Abstracts
Current Awareness in Biological Sciences
Current Contents/Life Sciences
Excerpta Medica/EMBASE
Index Medicus/MEDLINE
ISI/Biotechnology Citation Index
Reference Update
Science Citation Index
Product News.

Product News features newly available equipment, laboratory materials, and software that may be of interest to the readers of this journal. Endorsement by Genome Research or Cold Spring Harbor Laboratory is not implied. Readers may obtain further information regarding these products by entering the appropriate numbers on the postage-free Reader Service Card included in this issue.

EZ-GCAmp High-GC PCR/MPCR Optimizer Kit

Maxim’s EZ-GCAmp High-GC PCR/MPCR Optimizer Kit facilitates PCR amplification of virtually all GC-rich sequences that are difficult or impossible to amplify by standard methods. The Kit is based on Maxim’s PCR/MPCR buffer system plus additional reagents that weaken base pairing in GC-rich sequences. The efficient amplification of GC-rich templates by the Kit results in more uniform amplification of complex DNA populations. This ability to amplify DNA fragments with equal efficiency regardless of base composition should be useful in other applications as well, including differential display, cDNA, or complex genomic DNA amplification.

For further information, call Maxim Biotech at (800) 989-6296. Reader service number 295.

The New Leica DM RXA: The Computer-Controlled Microscope for Applications in Biomedical Research and Industry

The Leica DM RXA is a new automated microscope in Leica’s DM R line of research microscopes with infinity optics. With the introduction of the Leica DM RXA, Leica takes a decisive step toward microscope automation and complete system integration with computer control of multiple microscope functions. The Leica DM RXA provides individual and application-specific solutions for users in biomedical and materials research who are increasingly turning toward microscope automation and ergonomy. This thoroughly modular instrument is a PC-controllable microscope for many important microscopy functions. All microscope functions use software protocols compatible with Microsoft Windows 95 and Windows NT operating systems. With system integration and numerous computer-controllable functions, the Leica DM RXA opens a new dimension of possibilities, such as remote-controlled microscopes for tele-microscopy and contamination rooms. The active function modules of the Leica DM RXA offer exciting solutions for biomedical and industrial applications.

The automated functions of the Leica DM RXA include Microsoft Windows 95 and Microsoft Windows NT compatibility, an RS232 C interface for computer control of all motorized functions, motor focus with three levels of fine focus and exact Z-axis repositioning, a motorized 6- or 7-place nosepiece with push button changer, and a motorized universal condenser with a transmitted light condenser top lens that swings out automatically for low magnification objectives. Also included is a motorized transmitted light field and aperture adjustment with automatic adjustment of illumination diaphragms when the objective is changed (automatic Koehler illumination), a motorized reflected light illuminator with fluorescence filter cubes or Brightfield/Darkfield reflector changed by keystroke (the modern solution for multi-wavelength fluorescence), a motorized dark slide to minimize photobleaching of fluorescence specimens during epi-fluorescence illumination, and a motorized zoom observation and imaging module with zoom magnification range of 0.9–2.5x, providing a total microscope magnification range of 14.4–6,250x.

For further information, call Leica, Inc., at (800) 248-0123 or fax (847) 405-0147 or write 111 Deer Lake Rd, Deerfield, IL 60015 USA. Reader service no. 296.
C. elegans II
Monograph 33
Edited by Donald L. Riddle, University of Missouri, Columbia; Thomas Blumenthal, Indiana University; Barbara J. Meyer, University of California, Berkeley; and James R. Priess, Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle

Studies of the cells and genes of the nematode C. elegans have become a cornerstone of current biology. A classic 1988 Cold Spring Harbor monograph described the basic genetics, anatomy and development of the organism. Now, in that authoritative tradition, comes C. elegans II — not a second edition but a book that breaks new ground and defines the current status of the field, providing a detailed molecular explanation of how development is regulated and the nervous system specifies varied aspects of behavior. This volume is a must for any investigator doing worm studies but it has been written and rigorously edited to illuminate for a wider community of investigators in cell and molecular biology who should know how new knowledge of C. elegans relates to their own specialty.

CONTENTS
Preface (B. Alberts)
Foreword (S. Brenner)
Introduction to C. elegans (D.L. Riddle, T. Blumenthal, B.J. Meyer, J.R. Priess); The Genome (R.H. Waterston, J.E. Sulston, A.R. Coulson); Chromosome Organization, Mitosis, and Meiosis (D.G. Albertson, A.M. Rose, A.M. Villeneuve); Mutation (R.C. Johnsen, D.L. Baillie); Transposons (R.H.A. Plasterk, H.G.A.M. van Luenen); RNA Processing and Gene Structure (T. Blumenthal, K. Steward); Transcription Factors and Transcriptional Regulation (J.D. McGhee, M.W. Krause); mRNA and Translation (P. Anderson, J. Kimble); Sex Determination and X Chromosome Dosage Compensation (B.J. Meyer); Developmental Genetics of the Germ Line (T. Schedl); Spermatogenesis (S.W. L’Hernault); Male Development and Mating Behavior (S.W. Emmons, P.W. Sternberg); Fertilization and Establishment of Polarity in the Embryo (K.J. Kemphues, S. Strome); Specification of Cell Fates in the Early Embryo (R. Schnabel, J.R. Priess); Cell Death (M.O. Hengartner); Muscle: Structure, Function, and Development (D.G. Moerman, A. Fire); Extracellular Matrix (J.M. Kramer); Heterochronic Genes (V. Ambros); Development of the Vulva (I. Greenwald); Patterning the Nervous System (G. Ruvkun); Cell and Growth Cone Migrations (A. Antebi, C.R. Norris, E.M. Hedgecock, G. Garriga); Synaptic Transmission (J.B. Rand, M.L. Nonet); Mechanotransduction (M. Driscoll, J. Kaplan); Feeding and Defecation (L. Avery, J.H. Thomas); Chemotaxis and Thermotaxis (C.I. Bargmann, I. Mori); Genetic and Environmental Regulation of Dauer Larva Development (D.L. Riddle, P.S. Albert); Neural Plasticity (E.M. Jorgensen, C. Rankin); Environmental Factors and Gene Activities That Influence the Life Span (C. Kenyon); Evolution (D.H.A. Fitch, W.K. Thomas); Parasitic Nematodes (M. Blaxter, D. Bird)

Appendices

Bibliography
1997, 1222 pp., illus., color plates, index

Also available:
The Nematode Caenorhabditis elegans
Monograph 17
Edited by William B. Wood, University of Colorado, Boulder
1988, 667 pp., illus., appendices, bibliography index

To order, or request additional information
Call: 1-800-843-4388 (Continental U.S. and Canada) 516-349-1930 (All other locations)
FAX: 516-349-1946
E-MAIL: cspress@cshl.org or World Wide Web Site http://www.cshl.org/
Write: CSHL Press, 10 Skyline Drive, Plainview, NY 11803-2500
Epigenetic Mechanisms of Gene Regulation

Monograph 32

Edited by Vincenzo E.A. Russo, Max-Planck-Institut für Molekulare Genetik; Robert A. Martienssen, Cold Spring Harbor Laboratory; Arthur D. Riggs, Beckman Research Institute of the City of Hope

Many inheritable changes in gene function are not explained by changes in the DNA sequence. Such epigenetic mechanisms are known to influence gene function in most complex organisms and include effects such as transposon function, chromosome imprinting, yeast mating type switching and telomeric silencing. In recent years, epigenetic effects have become a major focus of research activity. This monograph, edited by three well-known biologists from different specialties, is the first to review and synthesise what is known about these effects across all species, particularly from a molecular perspective, and will be of interest to everyone in the fields of molecular biology and genetics.

CONTENTS

Introduction (A.D. Riggs et al.)

Historical Overview of Epigenetic Mechanisms

DNA Methylation in Eukaryotes: 20 Years On (R. Holliday); Overview of Epigenetic Mechanisms (A.D. Riggs, T.N. Porter)

DNA Methylation

Gene Silencing in Mammalian Cells (R. Holliday et al.); DNA Methyltransferases in Mammalian Development and Genome Defense (T.H. Bestor); The Mutational Burden of 5-Methylcytosine (A.S. Yang et al.); Plant Methyltransferases and Their Targets in the Plant Genome (R.L.P. Adams et al.); Mechanism of DNA Demethylation in Vertebrates and Its Biological Significance (J.-P. Jost); The Role of DNA Methylation in Plant Development (E.J. Finnegan); Methylated-related Epigenetic Signals in Bacterial DNA (J. Casadesús, J. Torreblanca); DNA Modification and Restriction: Selfish Behavior of an Epigenetic System (I. Kobayashi)

Paramutation, Imprinting and X-Inactivation

Organization and Control of Imprinted Genes: The Common Features (J.F.-X. Ainscough, M.A. Surani); Genomic Imprinting and Modifier Genes in the Mouse (J. Walter et al.); Establishment of Imprinted Methylation Patterns during Development (R. Shemer, A. Razin); X-Chromosome Inactivation and Epigenetic Mechanisms (A.D. Riggs, T.N. Porter); X-Chromosomal Inactivation: XCE and the Candidate Region for the X-Inactivation Center (P. Avner); Epigenetic Silencing and Activation of a Maize r Gene (J.L. Kermicle); b and pI Paramutation in Maize: Heritable Transcription States Programmed during Development (V.L. Chandler et al.); DNA Methylation of Flower Color Transgenes in Petunia hybrida (P. Meyer)

Repeated Genes and Gene Silencing

Nuclear Organization and Chromatin Structure

Transcriptional Silencing in the Fission Yeast: A Manifestation of Higher Order Chromosome Structure and Functions (R.C. Allshire); Transcriptional Silencing of the Yeast Mating-type Genes (S.G. Holmes et al.); Stable Chromatin States Regulating Homeotic Genes in Drosophila (V. Pirrotta); The Role of Polycomb Group and Trithorax Group Chromatin Complexes in the Maintenance of Determined Cell States (R. Paro, P.J. Harte); Histones, Histone Modifications, and the Inheritance of Chromatin Structure (S.U. Kass, A.P. Wolfe)

Transposable Elements and Viruses

The Silencing of Human Immunodeficiency Virus (D.P. Bednarik); CpG Suppression in HIV-1 Versus HIV-2: Correlation with Pathogenicity and Possible Implications for the Design of Antiretroviral Vaccines (J.W. Nyce); Epigenetic Regulation of the Maize Spm Transposable Element (N. Fedoroff); Epigenetic Silencing of Mu Transposable Elements in Maize (R.A. Martienssen)

Appendices

Essentials of Plant Development (R.A. Martienssen); Essentials of Mouse Development (A.D. Riggs)

Reprints

Paramutation: Directed Genetic Change (R.A. Brink et al.); DNA Modification Mechanisms and Gene Activity during Development (R. Holliday, J.E. Pugh); X Inactivation, Differentiation, and DNA Methylation (A.D. Riggs)

1997, 692 pp., illus., color plates, glossary, index

Cloth $125 ISBN 0-87969-490-4

To order, or request additional information
Call: 1-800-843-4388 (Continental U.S. and Canada) 516-349-1930 (All other locations)
FAX: 516-349-1946
E-MAIL: cshlpress@cshl.org or World Wide Web Site http://www.cshl.org/
Write: CSHL Press, 10 Skyline Drive, Plainview, NY 11803-2500