Here's why:

1. Genome Research publishes the best and most creative research on physical and genetic mapping, DNA sequencing, gene discovery, informatics, statistical and mathematical methods, technology development, and gene function.

A Novel In Vivo Method to Detect DNA Sequence Variation
Malek Faham and David R. Cox

The Genexpress Index: A Resource for Gene Discovery and the Genic Map of the Human Genome
Remy Houlgate, Regine Mariage-Samson, Simone Duprat, Anne Tesnier, Simone Bentolilla, Bernard Lamy, and Charles Auffray

A Biometrical Genome Search in Rats Reveals the Multigenic Basis of Blood Pressure Variation

Karyotype Distributions in a Stochastic Model of Reciprocal Translocation
David Sankoff and Vincent Ferretti

A Physical Map of Chromosome 2 of Arabidopsis thaliana
Eve Ann Zatchyo, Ming Li Wang, Iulia Dewdney, David Bouchet, Christine Camilleri, Stephen Belmonto, La Huang, Maureen Dolan, and Howard M. Goodman


Check out the example at http://www.cshl.org/journals/gr/supplement/and on-line abstracts for 1996 issues.

3. Genome Research publishes review articles that put current research accomplishments into perspective.

Hyper-recombination and Bloom's Syndrome: Microbes Again Provide Clues About Cancer
Rodney Rotlewiez and Serge Gangloff

Around the Genomes: The Drosophila Genome Project
Gerald M. Rubin

4. Genome Research is expanding the "PCR Methods and Applications" section to incorporate more methods germane to genome research — henceforth, the "Genome Methods" section.

Cross-screening: A New Method to Assemble Clones Rapidly and Unambiguously into Contigs
John Locke, Greg Rairdan, Heathier McDermid, David Nash, David Pilgrim, John Bell, Kenneth Roy, and Ross Hodgetts

5. Genome Research has also begun publishing letters — concise reports describing the structure, sequence, expression, and/or other biologically relevant features of a gene, with supplementary data made available electronically.

EDITORS
Mark Boguski
National Center for Biotechnology Information/NIH
Aravinda Chakravarti
Case Western Reserve University
Eric Green
National Center for Human Genome Research, NIH
Richard Myers
Stanford University School of Medicine

Don't get left behind. Subscribe today!
Using the Human Transcript Map

Now you can place almost any human sequence in one of the 1,000 genetically anchored bins on the recently published radiation hybrid-based human transcript map\(^1\). Armed with this knowledge, you can look up all of the transcripts that have been mapped to that bin and simply purchase transcript-specific STS primer pairs, cDNA clones, and YAC clones for most of the transcripts. BAC clones containing the transcripts can be determined by PCR-based or hybridization-based screening.

Over the course of the next year, tens of thousands of additional transcripts will be added to this resource which is being updated and released over the world wide web by Mark Boguski, Greg Schuler, and the staff at NCBI\(^2\). Most of these new transcripts will be based on the invaluable cDNA resource made possible by the I.M.A.G.E. Consortium\(^3\), the end-sequencing of which is being performed by Washington University and has been made possible by the generous support of Merck & Company\(^4\). The expansion of the transcript map is being accelerated by a significant donation from Sandoz to map 10,000 brain related transcripts\(^5\).

The resources needed to make the maximum use of this new tool are available from Research Genetics. Visit our web site at http://www.resgen.com or e-mail Kay Swanson (kswanson@resgen.com) or Jim Hudson (hudson@resgen.com) for more information. If you would like a free copy of the transcript map, please send a name and address via e-mail to kpollock@resgen.com.

References
5. Research Genetics Resources, Vol. 3, No. 2, pg.1