Strategies for Protein Purification and Characterization
A Laboratory Course Manual

By Daniel R. Marshak, Cold Spring Harbor Laboratory; James T. Kadonaga, Department of Biology, University of California, San Diego; Richard R. Burgess, University of Wisconsin, Madison, and Mark W. Knuth, Promega Corporation, Madison, Wisconsin; William A. Brennan, Jr., Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, and Sue-Hwa Lin, University of Texas M.D. Anderson Cancer Center

Investigators who have identified and cloned a gene of interest often want to isolate and characterize the protein product, yet the methods required are notoriously tricky for the inexperienced. For the past four years, a course has been held at Cold Spring Harbor Laboratory to teach scientists how to execute the major protein techniques by applying them to four distinct, representative types of molecule: a regulatory protein, a DNA-binding protein, a recombinant protein, and a membrane-bound receptor. This course has now been adapted in the form of a laboratory manual that covers a variety of bulk fractionation, electrophoretic, and chromatographic techniques. Step-by-step protocols are accompanied by troubleshooting advice and guidance on generalizing the techniques for other classes and types of protein. The emphasis throughout is on strategies for purification and characterization rather than automated instrumental analysis.

After years of rigorous testing, these techniques are robust and reliable, and are presented here with the clarity and completeness for which Cold Spring Harbor manuals are celebrated. The book is invaluable for specialists in genetics, microbiology, neuroscience, and cell biology who wish to develop expertise in working with proteins.

CONTENTS

Foreword by James E. Rothman
Introduction
How to Use This Manual
UNIT I: PURIFICATION OF CALMODULIN
Introduction
Experiment 1: Activity Assays: Assay of Calmodulin Fractions
Experiment 2: Preparation of a Tissue Extract
Experiment 3: Bulk Fractionation
Experiment 4: Ion-exchange Chromatography
Experiment 5: Hydrophobic Interaction Chromatography
Experiment 6: Characterization of Calmodulin: Calculation of Recovery
Experiment 7: Characterization of Calmodulin: Electrophoresis
Experiment 8: Proteolytic Digestion
Experiment 9: Reverse-phase HPLC
Experiment 10: Physical Analysis of Calmodulin
Experiment 11: Chemical Analysis of Calmodulin
Preparation of Reagents
References
UNIT II: PURIFICATION OF TRANSCRIPTION FACTOR AP-1 FROM HELa CELLS
Introduction
Experiment 1: Preparation of a Nuclear Extract from HeLa Cells
Experiment 2: Gel Filtration Chromatography with Sephacryl S-300 HR
Experiment 3: Sequence-specific DNA Affinity Chromatography
Experiment 4: DNase I Footprinting
Experiment 5: Gel Mobility-shift Assay
Experiment 6: Preparation of Heparin-Sepharose CL-2B
Preparation of Reagents
References
UNIT III: PURIFICATION OF A RECOMBINANT PROTEIN OVERPRODUCED IN ESCHERICHIA COLI
Introduction
Experiment 1: Breakage of E. coli Cells and Preparation of Inclusion Bodies
Experiment 2: Solubilization, Refolding, and Ion-exchange Chromatography of the Inclusion Body Pellet (\(\sigma^{32}\))
Experiment 3: Polyethyleneimine Precipitation and Immunoaffinity Chromatography of the Soluble Extract (Core RNA Polymerase-\(\sigma^{32}\) Complex)
Experiment 4: Quantitation and Summary of Preparation
Experiment 5: Protein Characterization
Protocol Development Trials: Purification of \(\sigma^{32}\) from a Bacterial Overexpresser
Preparation of Reagents
References
UNIT IV: SOLUBILIZATION AND PURIFICATION OF THE RAT LIVER INSULIN RECEPTOR
Introduction
Experiment 1: Isolation of Plasma Membranes from Rat Liver
Experiment 2: Solubilization of Insulin Receptor from Membranes
Experiment 3: Lectin Affinity Chromatography of Solubilized Receptors
Experiment 4: Insulin Affinity Chromatography of Partially Purified Receptors
Experiment 5: Cross-linking of Insulin Receptors with [125I] Insulin
Experiment 6: Insulin-stimulated Insulin Receptor Autophosphorylation
Experiment 7: Analysis of Insulin Receptor Glycosylation
Preparation of Reagents
References
Appendices

1996, 396 pp., illus., appendices, indexes
Plastic comb binding $85 ISBN 0-87969-385-1
RESEARCH PAPERS

Gene Transfer into Corn Earworm (Helicoverpa zea) Embryos

James D. DeVault, Keith J. Hughes, Roger A. Leopold, Odell A. Johnson, and Sudhir K. Narang

Identity-by-descent Mapping of Recessive Traits in Livestock: Application to Map the Bovine Syndactyly Locus to Chromosome 15

Carole Charlier, Frédéric Farnir, Paulette Berzi, Pascal Vanmanshoven, Benoît Brouwers, Hans Vromans, and Michel Georges

Sequencing the 500-kb GC-rich Symbiotic Replicon of Rhizobium sp. NGR234 Using Dye Terminators and a Thermostable “Sequenase”: A Beginning

Christoph Freiberg, Xavier Perret, William J. Broughton, and André Rosenthal

Worldwide Distribution of Human Y-chromosome Haplotypes

Fabrício R. Santos, Néstor O. Bianchi, and Sérgio D.J. Pena

Bacterial Artificial Chromosome Cloning and Mapping of a 630-kb Human Extrachromosomal Structure

Min Wang, Stephanie Shouse, Barbara Lipes, Ung-Jin Kim, Hiroaki Shizuya, and Eric Lai

LETTERS

The Genomic Structure of Discoidin Receptor Tyrosine Kinase

Martin P. Playford, Robin J. Butler, Xiao Cun Wang, Roy M. Katso, Inez E. Cooke, and Trivadi S. Ganesan

A Contiguous High-resolution Radiation Hybrid Map of 44 Loci from the Distal Portion of the Long Arm of Human Chromosome 5

Janet A. Warrington and John J. Wasmuth

(continued)
Uniform Amplification of a Mixture of Deoxyribonucleic Acids with Varying GC Content

Namadev Baskaran, Rajendra P. Kandpal, Ajay K. Bhargava, Michael W. Glynn, Allen Bale, and Sherman M. Weissmann

A DNA Microarray System for Analyzing Complex DNA Samples Using Two-color Fluorescent Probe Hybridization

Dari Shalon, Stephen J. Smith, and Patrick O. Brown

Microsatellite Hybrid Capture Technique for Simultaneous Isolation of Various STR Markers

Michal Prochazka

Erratum

Product News

COVER DNA microarrays for analyzing complex DNA samples. Shown is a two-color fluorescent scan of an 1.8-cm × 1.8-cm yeast array of λ clones of yeast genomic DNA. (For details, see Shalon et al., p. 639.)