GENOME RESEARCH

Reader Survey Giveaway

Just take a few minutes to fill out this Reader Survey and we’ll enter you in a drawing to win a **free airline ticket** good anywhere in the continental United States!*

Please **FAX completed forms** to 516-367-8532. Or, mail to: Genome Research, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724.

Employees of Cold Spring Harbor Laboratory and members of their immediate family (spouses, children, and parents) are not eligible. Limit one entry per person. **All sections must be completed to be eligible.**

A

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Organization</th>
<th>Address</th>
<th>City</th>
<th>State</th>
<th>Zip Code</th>
<th>Postal Code</th>
<th>Country</th>
<th>Telephone</th>
<th>FAX</th>
</tr>
</thead>
</table>

Are you a subscriber? [] Yes [] No

Is this a pass-along copy? [] Yes [] No

B

For further information about advertisements and new products, write the reader service number(s), located at the bottom of each advertisement, in the boxes below. Please also enter the issue date, your name and address, and return this page.

Issue Date:

C

Your position: (Please check one)

[](17) Principal Investigator
[](10) Research Associate
[](3) Postdoctoral Scientist
[](28) Lab Manager
[](2) Graduate Student
[](5) Lab Technician
[](29) Purchasing Agent/Buyer
[](99) Other

Employment: (Please check one)

[](1) University/college
[](2) Private Research Institute
[](3) Hospital
[](4) Medical School
[](5) Industry
[](6) Government

Please indicate your areas of interest and the techniques you use in your research (Check all that apply)

MOLECULAR BIOLOGY

[](1) Autoradiography
[](2) cDNA synthesis
[](3) Cloning
[](4) DNA footprinting
[](5) DNA purification
[](6) Electroporation
[](7) Eukaryotic expression
[](8) Genomic mapping & screening
[](9) In situ hybridization
[](10) In vitro transcription
[](11) In vitro translation
[](12) Library screening

[](13) Mutagenesis
[](14) Nonisotopic labeling & detection
[](15) Nucleic acid electrophoresis
[](16) Nucleic acid radiolabeling
[](17) Nucleic acid sequencing
[](18) Nucleic acid synthesis
[](19) PCR
[](20) Prokaryotic expression
[](22) Pulsed field electrophoresis
[](23) RNA analysis
[](24) RNA purification
[](25) Software aided sequence analysis
[](26) Transfections

PROTEIN CHEMISTRY

[](30) Amino acid analysis
[](31) Chromatography
[](36) Electrophoresis of proteins
[](37) Glycoprotein analysis
[](38) Peptide mapping
[](40) Protein kinase assays
[](42) Protein purification
[](43) Protein sequencing

IMMUNOLOGY

[](53) ELISA
[](54) Flow cytometry
[](55) Hybridoma production
[](56) Immunohistochemistry
[](59) Western blotting

CELL BIOLOGY

[](70) Apoptosis
[](71) Cell proliferation
[](72) ES cell culture
[](73) Growth factors/cytokines
[](74) Insect cell culture
[](75) Mammalian cell culture
[](76) Microscopy
[](79) Serum-free cell culture

Some restrictions do apply. 14-day advance reservations are required.
Advertise in
Genome Research
and reach the people doing
the most exciting science of the 90s!!

Please call or FAX Teresa Tiganis, Advertising Manager for further details.
Tel. (516) 367-8351, FAX (516) 367-8532.
Introducing IsoCode Stix, a revolutionary new device for fast isolation of DNA template from blood samples — with exceptionally reproducible results.

The IsoCode Stix dipstick format facilitates the easy collection of blood samples, even at remote locations. A write-on identification feature guarantees sample traceability.

Using IsoCode Stix, researchers can isolate DNA for PCR with a simple water extraction. As the DNA is eluted, PCR inhibitors such as hemoglobin remain on the matrix, ensuring consistent results.

IsoCode Stix are stored at ambient temperatures, eliminating the need for refrigeration. This stability simplifies archiving and the mailing of blood samples.

For your FREE SAMPLE of IsoCode Stix, call the S&S Technical Service Department today.

Call: 1-800-245-4024 • 8 am - 8 pm EST
Outside U.S. & Canada fax: 49-5561-791536
Here’s why:

1. Genome Research publishes the best and most creative research on physical and genetic mapping, DNA sequencing, gene discovery, informatics, statistical and mathematical methods, technology development, and gene function.

A Novel In Vivo Method to Detect DNA Sequence Variation
Malek Faham and David R. Cox

The Genexpress Index: A Resource for Gene Discovery and the Genic Map of the Human Genome
Rimha Houdgate, Fréjine Mariage-Samson, Simone Dufrat, Anne Tressier, Simone Bentolila, Bernard Lamy, and Charles Auffray

A Biometrical Genome Search in Rats Reveals the Multigenic Basis of Blood Pressure Variation
Nichola I. Schork, José E. Krüger, Maria R. Trottier, Kéler G. Franchini, George Koike, Eduardo M. Krüger, Eric S. Lander, Victor J. Dau, and Howard T. Jacob

Karyotype Distributions in a Stochastic Model of Reciprocal Translocation
David Sankoff and Vincent Ferretti

A Physical Map of Chromosome 2 of Arabidopsis thaliana
Eve Ann Zachary, Ming Li Wang, Iulia Dovdei, David Bouchez, Christine Camilleri, Stephen Belmont, Lu Huang, Maureen Dolan, and Howard M. Goodman

Check out the example at http://www.cshl.org/journals/gr/supplement/ and on-line abstracts for 1996 issues.

3. Genome Research publishes review articles that put current research accomplishments into perspective.

Hyper-recombination and Bloom’s Syndrome: Microbes Again Provide Clues About Cancer
Rodney Rothstein and Serge Gangloff

Around the Genomes: The Drosophila Genome Project
Gerald M. Rubin

4. Genome Research is expanding the "PCR Methods and Applications" section to incorporate more methods germane to genome research — henceforth, the "Genome Methods" section.

Cross-screening: A New Method to Assemble Clones Rapidly and Unambiguously into Contigs
John Locke, Greg Rairdan, Heather McDermid, David Nask, David Pilgrim, John Bell, Kenneth Roy, and Ross Hodgetts

5. Genome Research has also begun publishing letters — concise reports describing the structure, sequence, expression, and/or other biologically relevant features of a gene, with supplementary data made available electronically.

EDITORS
Mark Boguski
National Center for Biotechnology Information/NIH
Aravinda Chakravarti
Case Western Reserve University
Richard Gibbs
Stanford University School of Medicine
Eric Green
National Center for Human Genome Research, NIH
Richard Myers
Stanford University School of Medicine

Don’t get left behind. Subscribe today!
Alive?

for Yeast Transformation!

Aureobasidin A is a novel cyclic depsipeptide antibiotic. Isolated from the culture broth of the black yeast *Aureobasidium pullulans* R106, it possesses a wide spectrum of antifungal activity.

Bbe I am1105 I TaHaRa

Bal I ~pAUR101 DNA is an integrating plasmid vector which can only be maintained when integrated into yeast chromosomes via homologous recombination. With linearization, it achieves high frequency integration of foreign DNA into yeast chromosomes with no adverse effects.

Bgl II

pAUR101 DNA is an integrating plasmid vector carrying the CEN/ARS cassette that provides mitotic stability and the ability to autonomously replicate in yeast cells. This vector also has the *URA3* gene for additional yeast transformation selection and *Amp* gene for *E. coli*, acting as a shuttle vector.

pAUR112 DNA is a centromere plasmid vector for *E. coli*. The *URA3* gene is required for selection in yeast, and the *Amp* gene facilitates transformation.

Dead or Alive?

The Simplest Selection System for Yeast Transformation!

A Breakthrough in Yeast Manipulation, Especially for Brewery and Food Processing.

One-copy Inclusion of AUR1-C Marker Gene Confers Aureobasidin A Resistance.

Achieves Highly Efficient Transformation Even in Polyploid Yeast Without Auxotrophic Mutation.

Maximum Selectivity Without Complicated Sample/Medium Preparation.

Versatile Application Potential Can Include Gene Disruption.

* All biological products obtained using this product or system are for Research Use only and prohibited from assigning to the third party. Aureobasidin A is covered by Patents issued to TaKaRa. Any commercialization of products resulting from the use of this technology requires a License from TaKaRa.
Product News. . . .

Product News features newly available equipment, laboratory materials, and software that may be of interest to the readers of this journal. Endorsement by Genome Research or Cold Spring Harbor Laboratory is not implied. Readers may obtain further information regarding these products by entering the appropriate numbers on the postage-free Reader Service Card included in this issue.

Rad-Free Kits® Packaged in Multi-use Container from Schleicher & Schuell

The S&S Rad-Free® 30-reaction Probe Labeling kits and Universal Oligo Labeling kits are now packaged in a handy plastic tray that can also be used for gel staining, hybridization, and washing steps. The tray measures 19 cm (w) × 20 cm (l) × 6 cm (h) and features a tight-fitting lid and two handles. Made of high-density plastic that withstands temperatures up to 100°C, the tray holds up to 2 quarts of liquid and has volume graduations in both metric and English units. The new reusable Rad-Free packaging is provided at no extra cost. The Rad-Free products feature simple and consistent nonenzymatic labeling via psoralen biotin, followed by sensitive detection using chemiluminescent substrate sheets.

For more information, contact Schleicher & Schuell, Inc., P.O. Box 2012, Keene, N.H. 03431; phone (800) 245-4024, fax (603) 357-3627; email: techserv@s-and-s.com. Reader service no. 217.

Beckman Introduces Three New BioRobotic Systems for High-throughput Screening

Beckman Instruments, Inc., announces the development of three new BioRobotic systems for the automation of high-throughput drug screening. They combine the Biomek® 2000 Laboratory Automation Workstation from Beckman, the ORCA® linear track robot system, and SAMI® software from SAGIAN, Inc., detectors from Wallac Oy and Molecular Devices Corp., and additional detectors and modules. All of the components are fully integrated into systems specifically configured for high-throughput screening, an important first step for pharmaceutical and biotechnology companies in the search for new drugs. The three applications systems were developed by SAGIAN for Beckman and include an ELISA System, a Receptor Binding System, and a Cell-Based System. Under an agreement with SAGIAN, Beckman will market, sell, and service these BioRobotic systems worldwide. With these three applications systems, Beckman expands its offering to the high-throughput screening market by providing systems with higher capacity, throughput, and functionality. The graphic Windows® software makes it easy for the researcher to configure new methods and assays without complicated programming. Beckman is a global leader that focuses on the chemistry of life. As an ISO 9000 quality systems company, Beckman automates and simplifies biological analysis in laboratories worldwide, with products that include automated systems, chemistries, accessories, software, and supplies for the life science and clinical diagnostic markets. SAGIAN is a laboratory automation manufacturing company located in Indianapolis, IN, USA.

For more information, contact your local Beckman office or call (800) 742-2345 (USA), FAX (800) 643-4366 (USA). From outside the USA call (714) 773-6707, or FAX (714) 773-8186. Access the Beckman World Wide Web Information Service at http://www.beckman.com. Reader Service no. 218.

Custom Hybridization-based Library Screening

Research Genetics’ custom hybridization screening service locates genomic or cDNA clones from our human or mouse BAC libraries or our I.M.A.G.E. Consortium libraries. The Human BAC Library usually yields 2–5 clones and the Mouse Bac library usually yields 4–6 clones. DNA in various forms may be used as probes: cDNAs, PCR fragments, ESTs, genomic fragments, YACs, BACs, cosmids, Alu-PCR fragments, and long oligonucleotides (>40-mers). Average turnaround time is 2 weeks, and the service guarantees one clone. Additional clones may be purchased if more are identified.

For more information, contact Research Genetics, Inc., at (800)533-4363. Reader service no. 216.
Fluorescence in-situ Hybridization (FISH) Custom Services

BIOS Laboratories, a leader in Molecular Genetics Resources, is pleased to offer custom fluorescence in situ hybridization services for accurate chromosome mapping. The BIOS FISH Services provide researchers with the ability to sublocalize human-specific genomic probes without setup costs or laboratory personnel training.

The FISH service may be used for the following applications:
- Cytogenetic mapping of genes
- Physical ordering of 2 clones on the same chromosome
- Characterization of YAC clones
- Analysis of nuclear integration sites

Upon service completion, BIOS provides a technical report that includes data analysis, photographs, negatives, and an ideogram. For additional information, contact our website at http://www.bioslabs.com, call (800) 678-9487, or FAX (203) 562-9377. Reader Service no. 219.
GENETIC ANALYSIS OF PATHOGENIC BACTERIA
A LABORATORY MANUAL
By Stanley R. Maloy, University of Illinois; Valley J. Stewart, Cornell University; Ronald K. Taylor, Dartmouth Medical School

The study of bacterial pathogens with genetic methods is a new and explosive field set to dominate microbiology in the next decade. Five years' progressive refinement in the celebrated Cold Spring Harbor course in Advanced Bacterial Genetics has produced a manual that teaches theoretical and practical molecular genetic approaches to bacterial pathogenicity. Chapters on concepts, technologies, and applications are followed by 15 multifaceted experiments with Salmonella and Vibrio, in which protocols and expected findings are fully demonstrated and strategies for similar approaches to other bacteria are discussed. This manual, the latest in a distinguished series from this long-established course, is the creation of three leading authorities on bacterial pathogens and is a conceptually unique book written for a broad audience of microbiologists in research, industrial, and public health labs.

CONTENTS

Overview: Approaching Genetic Analysis of Diverse Bacteria
Bacterial Pathogenesis
- General Concepts in Bacterial Pathogenesis: Paradigms of Bacterial Pathogenesis: Salmonella typhimurium, Vibrio cholerae
Practical Aspects of Microbial Genetics
- Genetic Nomenclature; Microbiological Procedures; Culture Media; Antibiotics, Antibiotic Resistance, and Positive and Negative Selections; Bacterial Physiology

Genetic Mapping
- Genetic Mapping of Chromosomal Genes; Generalized Transduction; Deletion Mapping
Mutants and Their Analysis
- Mutagenesis; Broad Host Range Allelic Exchange Systems; Suppression; Genetic Complementation; Polarity

Transposons and Fusions
- Uses of Transposons in Bacterial Genetics; Bacteriophage Mu
Operon and Gene Fusions: Operon and gene fusions with lacZ, Operon fusions with uidA (gus), Gene fusions with phoA, In vivo expression technology

Gene Regulation
- Regulation of Virulence Genes; Challenge Phage; Genetic Analysis of DNA-Protein Interactions

Recombinant DNA
- Plasmids and Conjugation; Transformation and Electrotransformation; Basic Molecular Biology Techniques; Electrophoresis of DNA; Polymerase Chain Reaction

Experiments
- Introduction to Experiments 1-6; Experiment 1. Transposons: Tn10 Insertions Linked to Structural Genes; Experiment 3. Transposons: Tn10 Insertions in Regulatory Genes; Experiment 4. Conditional (Heat-sensitive and Amber) Mutations; Experiment 5. in Vivo Molecular Cloning; Experiment 6. Physical Mapping of Bacterial Chromosomes by Pulsed-field Gel Electrophoresis; Introduction to Experiments 7-11; Experiment 7. Construction of P22 Challenge Phage; Experiment 8. Challenge Phase Assays; Experiment 9. Isolation of Operator Mutations; Experiment 10. DNA Sequence Analysis of Challenge Phage Mutants; Experiment 11. Isolation of Second-site Suppressor Mutations that Recognize Mutant Operator Sites; Introduction to Experiments 12-15; Experiment 12. Isolation of Vibrio cholerae TphoA Insertions; Experiment 13. Southern DNA Hybridization to Map TphoA Insertions; Experiment 14. Allelic Exchange in Gram-negative Bacteria Utilizing Suicide Plasmid Vectors; Experiment 15. Oligonucleotide-directed Site-specific Mutagenesis

Appendices
- Strains, Phage, and Plasmids: Strain lists; Plasmid list
- Culture Media and Supplements: Liquid culture media, Solid culture media, Culture media supplements, Antibiotics, Buffers, P22 indicator media, MOPS culture medium
- Strain Collections: Storing strains, Shipping strains, Stain records, Culture collection record sheet
- Genetic Exchange and Mapping: Generalized transduction with phage P22, Rapid mapping in S. typhimurium with Mud-P22 prophages, Phage P22 lysates, Hydroxylamine mutagenesis of plasmid DNA, Preparation and transformation of competent cells, Preparation of electrocompetent cells and electroporation
- Enzyme Assays: β-Galactosidase assay in permeabilized cells, Alkaline phosphatase assay in permeabilized cells
- Recombinant DNA Methods: Plasmid DNA minipreps, Restriction endonuclease buffers, Ethanol precipitation, Phenol extraction, Spin columns, Drop dialysis, Agarose gels, Nondenaturing polyacrylamide gel electrophoresis of DNA, Useful DNA molecular weight standards, Purification and quantitation of PCR products, Purification of DNA bands from agarose by QIAquick gel extraction, Southern and Western analyses, Oligonucleotide-directed site-specific mutagenesis
- Plasmid and Transposon Restriction Maps: Plasmid pALTER-1, Plasmid pEG5005, Plasmid pSU18 and pSU19, Plasmid pGP704, Plasmids pKAS32 and pKAS46, Plasmid pPY190, Plasmid pPC36, Plasmids pMS421, Plasmid pGW1700, Bacteriophage Mu derivatives, Transposon Tn10 derivatives, Transposon TphoA

References
- 1996, 603 pp., illus., appendices, index
- Cloth $170
- Plastic comb binding $85

To order, or request additional information
Call: 1-800-843-4388 (Continental U.S. and Canada) 516-349-1930 (All other locations)
FAX: 516-349-1946
E-MAIL: cshlpress@cshl.org or World Wide Web Site http://www.cshl.org/
Write: CSHL Press, 10 Skyline Drive, Plainview, NY 11803-2500

ISBN 0-87969-452-1
Instructions to authors

GENOME RESEARCH welcomes high-quality research papers reporting new data in physical and genetic mapping, DNA sequencing, gene discovery, informatics, statistical and mathematical methods, DNA-based technology development, gene function, genome structure and function, and human disease. The journal also publishes review articles, short reports, and summaries of physical mapping and large-scale sequencing projects. All submissions to the journal will be peer-reviewed.

Publication time from acceptance of manuscript is within two months. For papers accepted subject to revision, only one revised version will be considered; it must be submitted within two months of the provisional acceptance.

The journal accepts papers that present original research that has not previously been published. Submission to the journal implies that a paper is not currently being considered for another journal or book. It is also understood that researchers who submit papers to this journal are prepared to make available to researchers materials needed to duplicate their work. Authors of accepted manuscripts must submit mapping and sequence data to the appropriate data bank and provide an accession number for this data at the page proof stage.

Papers should be submitted to:
Judy Cuddihy, Managing Editor
Genome Research
Cold Spring Harbor Laboratory Press
One Bungtown Road
Cold Spring Harbor, NY 11724
e-mail: cuddihyj@cshl.org

Manuscript preparation

Five copies of the manuscript should be submitted; at least four of these copies should have original art. A cover letter should include: (a) name, address, telephone number, FAX number, and e-mail address of author responsible for correspondence regarding the manuscript; (b) statement that the manuscript has been seen and approved by all listed authors; (c) any specific requirements for reproduction of art; (d) status of any statements of personal communication or other permissions needed; and (e) statement regarding databank submission of data.

The following order of manuscript sections is preferred: title page, abstract, introduction, results, discussion, methods, acknowledgments, references, tables, figure legends. Computer printouts of the manuscript should be of letter quality, and each page should be labeled with the first author's name and a page number. The methods presented should be detailed enough to allow any qualified researcher to duplicate the results.

References are name/date citations in text; please do not cite by number. Undated citations (unpublished, in preparation, personal communication) should include first initials and last names of authors. The reference list should be presented in alphabetical order. Bibliographic information should be supplied in the following order. For journal articles: Saiki, R.K., S. Scharf, F. Faloona, K.B. Mullis, G.T. Horn, H.A. Erlich, and N. Arnheim. 1985. Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science **230**: 1350-1354.

Figures should be supplied as high-quality, glossy prints. All figures should be labeled with the first author’s name, the figure number, and an indication of the top of the figure. The size of the figures will be adjusted to fit the journal format; therefore, please try to keep labels, symbols, and other call-out-devices in proportion to the figure size and detail. Authors wishing to publish four-color art must pay the associated publication costs; price estimates will be provided on acceptance of the paper.

Accepted manuscripts

Paper length in the journal is between 2 and 12 journal pages. A manuscript of 28-32 typed, double-spaced pages with 27 lines of 11 point text per page (a manuscript of 63,000 characters) with 4-6 figures and 1 or 2 tables will translate to 12 printed pages in the journal.

Accepted manuscripts should be supplied as a printed-out manuscript and on a disc to expedite typesetting. Please supply the manuscript as an ASCII text file if possible. If a word-processing file is being sent, please do not include any underscoring, italic, or boldface; spell out special characters (Greek, math); use two carriage returns at the end of each paragraph, subheads, and list items. Indicate on the disc: computer brand name, type of file (text or word-processing), name of software, and disc format. Accepted manuscripts can be e-mailed to cuddihyj@cshl.org, but a confirming printout of the paper should be sent to the journal offices.

Proofs are considered the final form of the paper and corrections can be made only in the case of factual errors. If additional information must be added at this stage, it should be in the form of “Note added in proof,” subject to the approval of the Editors.

To help defray the cost of publication, a charge of $20 per page will be made for publication in **Genome Research**. Authors unable to meet these charges should include a letter of explanation upon acceptance for publication; inability to meet these charges will have no effect on acceptance and publication of submitted papers.