A New Approach Using Multiplex Long Accurate PCR and Yeast Artificial Chromosomes for Bacterial Chromosome Mapping and Sequencing

Alexei Sorokin, Alla Lapidus, Veronique Capuano, Nathalie Galleron, Petar Pujic, and S. Dusko Ehrlich

An efficient approach for structural studies on bacterial chromosomes is presented. It is based on high-resolution PCR map construction by using a multiplex long accurate PCR (MLA PCR) protocol and a YAC clone carrying the region to be mapped as indicator. The high-resolution PCR map of the *Bacillus subtilis* *rrnB*-*dnaB* region is presented as an example. Data are also presented on the use of DNA generated by LA PCR for sequencing; they are relevant to LA PCR induced mutations and justify the application of such mapping for sequencing long stretches of bacterial chromosomes.

DNA cloning in yeast artificial chromosomes (YACs, Burke et al. 1987) has allowed the establishment of ordered collections of genome segments of organisms ranging from bacteria to man (Azevedo et al. 1993; Cohen et al. 1993). An attractive feature of such collections is that they are composed of a relatively small number of clones, because of the capacity of YACs to carry inserts of large size. However, large size may be a drawback for direct sequence analysis, and the use of YACs in sequencing projects has been limited to the construction of ordered λ or cosmid-based collections, by subcloning (Marshall 1995). We decided to follow, within the *Bacillus subtilis* Genome Sequencing Project (Kunst et al. 1995; Ogasawara et al. 1995), a different strategy for YAC sequencing. The strategy is based on a two-stage procedure: (1) shotgun sequencing of short YAC fragments cloned in phage M13, until a convenient number of contigs is obtained; and (2) ordering the contigs by combinatorial PCR, using as primers oligonucleotides complementary to the ends of this contig, and closing the gaps between contigs by sequencing the PCR products. A 104-kb insert of YAC 15-6B, from the ordered collection of the *B. subtilis* chromosome segments (Azevedo et al. 1993), was sequenced in this way (Sorokin et al. 1996). The advent of long accurate PCR (LA PCR) (Barnes 1994; Cheng et al. 1994) greatly improved this approach. The ordering of the contigs generated a map of the region, which we call the PCR map. This mapping is the inherent feature of the strategy. We describe here an efficient LA PCR-based strategy to order contigs and generate material for further sequencing, and discuss the quality of the sequence obtained with LA PCR products.

RESULTS AND DISCUSSION

Constructing a Minimal PCR Map of the *rrnB-*dnaB Region of the *B. subtilis* Chromosome

We used YAC 15-132, which covers most of the region between the *dnaB* and *rrnB* loci of the *B. subtilis* chromosome (Azevedo et al. 1993) and carries an insert of ~170 kb, as deduced from pulse field gel electrophoresis (PFGE). PFGE-purified DNA of this YAC was cloned in phage M13, and 500 clones were sequenced randomly, yielding 42 representative contigs, containing at least two independent gel readings.

Contig ordering is based on simultaneous use of multiple primers (Fig. 1, top). As depicted in Figure 1, concomitant use of six primers complementary to the ends of three contigs yields two...
YAC SEQUENCING

Figure 1 Ordering of contigs by MLA PCR. (Top) Schematic representation of the method. Template DNA is drawn as a line, contigs are represented by open boxes, arrows indicate the position and orientation of the primers, which are identified by letters a–f, horizontal bars indicate the region of the template homologous to the products expected to form with different primer mixtures. (Bottom) Electrophoretic analysis of the products obtained with seven primers complementary to the ends of contigs established during sequencing of YAC 15-132. The oligonucleotides in the mixture were designated AB6, AH1, BA1, BB1, AH2, AF8, and BA7. The LA PCR products obtained with the mixture of all primers are in lane 1. The missing primers are as follows: (Lane 2) AB6; (lane 3) AH1; (lane 4) BA1; (lane 5) BB1; (lane 6) AH2; (lane 7) AF8; (lane 8) BA7. Products obtained with the primer couples AB6/BA1 and AH2/BA7 are in lanes 9 and 10, respectively. (Lane 11) Size markers (λ DNA cleaved with HindIII). Sizes (in kb) are indicated at right. Five microliters of a 50-μl reaction mixture was loaded onto the gels.

PCR products (primers b and e are supposed to be too far to give a product). The primers required for synthesis of each product can be identified unambiguously by withdrawing one primer at a time from the mixture, and the relative order and orientation of contigs can thus be established. Determination of product size gives the distance between the contigs. An experiment with seven primers illustrates this approach (Fig. 1, bottom). Primers missing in lanes 2 and 4 are required to synthesize the shorter product, whereas primers missing in lanes 8 and 6 are required for the longer product. This assignment is confirmed by the use of the relevant primer couples in individual reactions (lanes 9 and 10). Up to 16 primers were used successfully together (not shown).

The main advantage of this method, which we designated multiplex LA PCR (MLA PCR), as compared to the use of primer couples in separate reactions, is that it requires a lower number of reactions to order contigs. The difference is considerable when contig number is high. For instance, only 17 simultaneous reactions are needed to order eight contigs by MLA PCR, as opposed to 120 reactions with primer couples. Furthermore, the DNA products (one or several) obtained in each MLA PCR reaction can be purified and used for further analysis, whereas most of the reactions with primer couples do not give products. A limitation of MLA PCR is that the synthesis of one product may interfere with that of another (Fig. 1, bottom; cf. the amount of the longer product in lanes 2 and 4 with that in lanes 3, 5, and 7). This can lead to failure to order some of the contigs and may limit the number of primers that can be used in a mixture. In our mapping experiments the 16 primers used together were expected to yield no more than two products, which were detected in all cases. However, simultaneous use of 22 primers, chosen to allow synthesis of 11 products covering the mapped region, yielded only a single product, shortest in size (not shown). Further study of MLA PCR conditions would be required to clarify this phenomenon.

The mapping is an iterative process aimed at establishing relative primer orientations and distances. Each iteration represents two MLA PCR experiments, one destined to measure the distance between two or more primers in a mixture and the second to identify the primers that gave the PCR products. After each iteration step the map is updated graphically or analytically, as described in Methods.

To apply this mapping strategy to YAC 15-132, 32 representative contigs were chosen and primers homologous to their ends were synthesized. A few data on the sequencing of this region were reported earlier (for a compilation, see Anagnostopoulos et al. 1993), which together with our sequenced tags contained 46,000 bp. The unknown sequence thus contained 129,000 bp, and the average distance between representative contigs was therefore 4 kb (129/32). Iteration of MLA PCR mapping resulted in the ordering of 23 contigs, with 9 remaining unpositioned. We call a minimal PCR map one of the minimal sets of
Figure 2 PCR map of the *rrnB-dnaB* region of the *B. subtilis* 168 chromosome. (A) Only the minimal PCR map described in the text is shown. YAC 15-132 covers the region between the *rrnB* and *ackA* genetic loci. The map of the region between *citZC* and *dnaB* was obtained by using primers corresponding to previously sequenced loci: *citZC*, *polA*, and *dnaB*. The area between *ackA* and *citZC* was mapped by using YAC 11-105 (see the text for details). Hatched rectangles represent sequenced areas. White rectangles correspond to the LA PCR fragments. Arrows with names designate primers. Sequenced loci are designated by the names of the genes according to the *B. subtilis* genetic map (Anagnostopoulos et al. 1993). Scale is in kb. (B) LA PCR amplification of the YAC 15-132 region. The primers used for the amplification are as follows: (1) AG2 + AC8; (2) AF8 + BB1; (3) AF6 + BA2; (4) AD7 + AD6; (5) AG6 + AD1; (6) AH8 + AG8; (7) AE5 + AD3; (8) AH2 + BA7; (9) BB2 + AH1; (10) AF3 + AA8; (11) AC7 + AE2; (12) BA1 + AB6; (13) /HindIII size markers (in kb).
tig should be close to that which is necessary and sufficient. In the case of YAC 15-132, to map 129 kb of unsequenced region, 32 contigs were used, but only 23 were required to complete the map. The average distance between the mapped contigs was thus ~5 kb, which is about four times less than the maximal length of the LA PCR product that we obtained (~18 kb). This ratio could provide guidance in future mapping experiments.

Use of LA PCR products for Sequencing

The use of LA PCR products for sequencing was tested during sequencing of the region between primers AG2–AC8 and AF8–AG8 containing 67,600 bp (Fig. 2A).

At least 10 independent LA PCR reactions were carried out for each region, using *B. subtilis* chromosomal DNA as template. All products were mixed to decrease the proportion of molecules with incorrect sequence, which could accumulate if a mistake occurred during early amplification cycles in one of the reactions. The products were used either for construction of random banks in plasmid pSGMU2 (Errington 1986) and the M13mp18 phage or for direct sequencing by synthetic primers. A total of 695 sequencing reactions were carried out with M13 or plasmid clones giving a total of ~288,000 bases and establishing a consensus sequence of 67.6 kb. We detected 42 point mutations in the cloned LA PCR products. The error rate generated by LA PCR is thus ~1 in 7000 bp (42/288,000), which is acceptable for genome sequencing projects. A similar result was obtained in the sequencing of a 35-kb region of another YAC 10-9 (V. Capuano, N. Galleron, P. Pujic, A. Sorokin, and S.D. Erlich, in prep.), where ~200,000 bases were read in 500 sequencing reactions and 21 mutations were detected. The correct sequence was determined in these cases by multiple sequencing of independent LA PCR-generated clones and/or direct sequencing of PCR products. We detected that in 30 cases the mutation change was A → G or T → C. This bias suggests that the mutations are attributable to the rTth polymerase mistakes rather than chemical modifications such as deamination of C residues during LA PCR, which would result in a bias in the opposite direction (C → T). The shift to higher GC content of product compared to template might be explained by preference of rTth or *Vent* polymerase for G or C bases.

CONCLUSIONS

The results presented here indicate that a high-resolution map and the sequence of DNA segments >100 kb from bacterial chromosomes can be established efficiently by a strategy that combines shotgun sequencing and MLA PCR. The strategy is particularly useful for sequencing genomes that are difficult to subclone in *Escherichia coli* as large segments, such as that of *B. subtilis* (Azevedo et al. 1993) and at least certain other AT-rich Gram-positive bacteria (M.-C. Chopin and S.D. Ehrlich, unpubl.). The method could easily be applied to segments of small genomes generated by rare cutting enzymes and purified by PFGE. Several further improvements of the strategy can be predicted: (1) The length of routine LA PCR products, which was ~18 kb in our hands, could be increased; (2) the multiplexing algorithm could be further optimized and the analysis of the results automatized; and (3) the MLA PCR conditions could be adjusted, to allow use of a higher number of primers in the mixtures. We believe that such improvements would allow extension of the mapping and subsequent sequencing to regions of megabase size, and even entire small genomes.

METHODS

Strains and Growth Conditions

Yeast cells containing artificial chromosomes were grown as described (Azevedo et al. 1993) *E. coli JIC 128F*, araD139 Δ(ara–leu)7696 galE15 galK16 Δ(lac)X74 hsdR− hsdM+ Strr F[λact + Δ(lacZ)M15 trnD36], which is reproducibly transformed by electroporation of M13 DNA with an efficiency of 5 × 10⁹ PFU/µg, was used in cloning experiments. Electrocompetent cells of JJ128F were prepared according to the protocol described by Dower et al. (1988) and stored at −80°C. They can be used for 6 months without detectable loss of the transforming activity. *B. subtilis* 168 strain used for the chromosomal DNA preparation was supplied by C. Anagnostopoulos (this laboratory).

Isolation of Bacterial Chromosomal DNA

Overnight cultures of 25 ml in LB (Sambrook et al. 1989) were harvested and treated with lysozyme (10 mg/ml in 50 mM Tris-HCl at pH 8.0, 50 mM EDTA, 25% sucrose). SDS was added to a final concentration of 0.5% and proteinase K to 100 µg/ml. Incubation was carried out at 50°C for 4 hr, and extraction was done twice with water-saturated phenol–chloroform (1:1 volume) at pH 8.0. After precipitation with two volumes of ethanol in 0.3 M NaOAc (pH 4.8), the DNA was removed with a glass rod and washed in 70% ethanol. It was stored in water at 100 µg/ml.
Isolation of YAC DNA

Plugs containing yeast chromosomes were made as described by Anand et al. (1989). Electrophoresis was performed in 1.2% agarose gels in 0.3 x TBE at 18°C (1 x TBE = 90 mM Tris borate/2 mM EDTA). The switching interval was from 0.3 to 6 sec in forward migration and from 0.1 to 2 sec in reverse migration for 20 hr. After separation, YAC DNA was electrophoretically purified by the Wizard PCR® Preps kit (Promega) or agarose gel electrophoresis. Phenol–chloroform treatment was usually necessary to make DNA digestible by restriction enzymes. This protocol allowed us to obtain ~1–10 μg of YAC DNA from 500 ml of yeast cell culture. The contamination by yeast chromosomal DNA was estimated to be between 20% and 50%.

Construction of an M13 Bank

DNA (0.5–10 μg) was partially digested by one of the following restriction enzymes: Aku I; Taq I; Hpa II; Hinf I; or Sau 3A. The digested DNA was separated in an agarose gel, and segments between 500 and 1500 bp were purified as described (Sorokin et al. 1993). The purified DNA was digested into 50 ng of M13, Acl I, or BamHI-cut and dephosphorylated M13mp19 vector in 20 μl of ligase buffer (Boehringer). The yield of phage plaques varied from 102 to 107 per 1 μg of M13 DNA with a ratio of white to blue clones from 1 to 10, respectively.

Selection of M13 Clones for Random Sequencing

White M13 plaques were propagated for 5–15 hr in 48-well plates in 2 x YT medium on JJC128F’ cells as a host. After centrifugation in a GPKR Beckman centrifuge, 150 μl of the phage supernatants was distributed in 96-well plates by use of a BIOMEC 1000 Laboratory work station (Beckman). Fifty microliters of the supernatants was used to hybridize plugs containing yeast chromosomes. Only hybridizing clones were taken for sequencing.

Sequencing

Single-stranded DNA of M13 phages was prepared as described earlier (Sorokin et al. 1993). For reverse sequencing, we used double-stranded DNA of the inserts prepared by PCR with biotinylated primers and magnetic beads, according to the supplier’s protocol (DYNAJ). Plasmid DNA for sequencing was prepared as described by Sorokin et al. 1995. PCR products used for sequencing with dye terminators were purified by the Wizard PCR® Preps kit (Promega) or agarose gel electrophoresis. Direct and reverse PCR sequencing was performed by use of Applied Biosystems PRISM direct or reverse sequencing kit on the Perkin Elmer 9600 thermal cycler or the Catalyst station of Applied Biosystems.

Oligonucleotide Synthesis and Standard PCR

Oligonucleotides were synthesized in the DNA synthesizer Oligo 1000 from Beckman. Standard PCR was performed by using M13 DNA or supernatants and B. subtilis or yeast chromosomal DNA under conditions described previously (Sorokin et al. 1993).

MAP PCR

The conditions for the MAP PCR reaction were as follows: 20 mM tricine (pH 8.7); 85 mM KOAc; 1 mM Mg(OAc)2; 8% glycerol; 2% dimethylsulfoxide; 0.2 μM each primer; 0.1 μg of B. subtilis chromosomal DNA; 2 units of T7 polymerase (Biolabs). The final reaction volume was 50 μl. Cycling conditions: 94°C for 5 min; 12 cycles of 10-sec melting at 94°C and 12 min annealing–polymerization–repair at 68°C, followed by 24 cycles with extension times increased by 1 sec for each cycle.

Mapping Formalization

Sequenced contigs were ordered graphically by redrawing a new version of the PCR map when new distances between primers were established. The procedure can be made analytically, which allows for easy automatization. Let Xij be the coordinate of primer j in the system of coordinates where primer i is at point zero. We consider that these coordinates are >0 in the 5’ → 3’ and < 0 in the opposite direction from primer i. A formalization of this mapping would be Xij = Xij’ – [(Xij’)(Xji’)/IXij’l]Xji’ where Xij’ is the mapping from obtaining some Xij = Xij’ > 0 in a successful PCR reaction and is thus an iterative process aimed at establishing all Xij, i = 1, ..., N, where N is the number of primers.

Computing

R. Staden’s xhap programme (Dear and Staden 1991), version 9.0, was used for gel assembling and consensus sequence generating.
ACKNOWLEDGMENTS

This work was supported in part by grants from Groupe-
ment de Recherches et d’Etudes sur les Génonomes (GREG),
the French Genome Project, (décision 21) and the Euro-
pean Union (BIO2-CT93-0272). The sequence data de-
scribed in this paper have been submitted to the DDBJ/-
EMBL/GenBank data libraries under accession nos.
D83243 and D83244.

The publication costs of this article were defrayed in
part by payment of page charges. This article must there-
fore be hereby marked “advertisement” in accordance
with 18 USC section 1734 solely to indicate this fact.

REFERENCES

The genetic map of Bacillus subtilis 168. In Bacillus
subtilis and other gram-positive bacteria (ed. A.L.
American Society for Microbiology, Washington, D.C.

Construction of yeast artificial chromosome libraries
with large inserts using fractionation by pulsed-field

Azevedo, V., E. Alvarez, E. Zumstein, G. Damiani, V.
collection of Bacillus subtilis DNA segments cloned in
90: 6047–6051.

Barnes, W.M. 1994. PCR amplification of up to 35-kb
dNA with high fidelity and high yield from λ
91: 2216–2220.

of large segments of exogenous DNA into yeast by
means of artificial chromosome vectors. Science
236: 806–812.

Cheng, S., C. Fockler, W.M. Barnes, and R. Higuchi.
1994. Effective amplification of long targets from cloned
91: 5695–5699.

Cohen, D., I. Chumakov, and J. Weissenbach. 1993. A
first-generation physical map of the human genome.

Dear, S. and R. Staden. 1991. A sequence assembly and
editing for efficient management of large projects.

High-efficiency transformation of E. coli by high-voltage

Errington, J. 1986. A general method for fusion of the
Escherichia coli lacZ gene to chromosomal genes in

Organization of the European Bacillus subtilis genome
sequencing project. Microbiology 141: 249–255.

Marshall, E. 1995. A strategy for the sequencing of the
genome 5 years early. Science 267: 783–784.

Ogasawara, N., Y. Fujita, Y. Kobayashi, Y. Sadaie, T.
1995. Systematic sequencing of the Bacillus subtilis
genome: Progress report of the Japanese group.
Microbiology 141: 257–259.

Molecular cloning: A laboratory manual, 2nd ed. Cold

Sorokin, A.V., E. Zumstein, V. Azevedo, S.D. Ehrlich, and
P. Serror. 1993. The organisation of the Bacillus subtilis
168 chromosome region between the spoVA and serA
genetic loci, based on sequence data. Mol. Microbiol.
10(2): 397–405.

Sorokin, A.V., P. Serror, P. Pujic, V. Azevedo, and S.D.
Ehrlich. 1995. The Bacillus subtilis chromosome region
encoding homologues of the Escherichia coli mssA and

Sorokin, A.V., V. Azevedo, E. Zumstein, N. Galleron, S.D.
Ehrlich, and P. Serror. 1996. Sequence analysis of the
Bacillus subtilis chromosome region between the serA
and kdg loci cloned in a yeast artificial chromosome.
Microbiology (in press).

Received February 8, 1996; accepted in revised form April 8,
1996.
A new approach using multiplex long accurate PCR and yeast artificial chromosomes for bacterial chromosome mapping and sequencing.

A Sorokin, A Lapidus, V Capuano, et al.

Genome Res. 1996 6: 448-453
Access the most recent version at doi:10.1101/gr.6.5.448

References
This article cites 14 articles, 5 of which can be accessed free at:
http://genome.cshlp.org/content/6/5/448.full.html#ref-list-1

License

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or [click here](http://genome.cshlp.org/subscriptions).