Good news for genetic disease researchers. A breakthrough in enzyme design just took mutation detection to new levels of convenience and performance.

That breakthrough is AmpliTaq® DNA Polymerase, FS—an enhanced enzyme developed expressly for automated fluorescent DNA sequencing.

AmpliTaq FS dye primer kits make it easier than ever to directly sequence PCR products. They combine the simplicity of cycle sequencing with high-efficiency ddNTP incorporation to produce precise data with uniform peak heights. The result is accurate detection of mutations.

AmpliTaq FS kits expand the power of ABI PRISM™ multicolor detection technology to sequence-based mutation detection. Together with our reagents and protocols for fluorescent PCR detection, we provide complete DNA analysis solutions for your laboratory.

Find out how PCR-based cycle sequencing with AmpliTaq FS kits makes mutation detection even easier. For more information and a free copy of our technical guide to comparative PCR sequencing, call 1-800-345-5224. Outside the U.S. and Canada, contact your local Perkin-Elmer representative.
Advertise in Genome Research
and reach 25,000 of the most important people
in the Genome Community!

Call or FAX Teresa Tiganis, Advertising Manager for rates and availability.
Tel. (516) 367-8351, FAX (516) 367-8532.
When you need information fast, don't wait for the mail! Simply fill out this page and either FAX it, email it, or call us up and tell us!

Name __
Title __
Organization ______________________________________
Address __
City __________________ State _______ Zip Code ______
Postal Code ______________ Country __________________
Telephone ______________ FAX _______________________

Are you a subscriber? [] Yes [] No
Is this a pass-along copy? [] Yes [] No

Please check the title(s) that most closely describe(s) your position:
[] Professor [] Graduate student [] Postdoctoral scientist
[] Lab director [] Lab technician [] Medical student
[] Undergraduate student [] Librarian [] Publisher

Please check your employment category:
[] University/college [] Research institute/foundation
[] Hospital [] Medical school [] Industry
[] Government [] Library/information center

Please check your primary field of interest:
[] Biochemistry

For further information about advertisements and new products, write the reader service number(s), located at the bottom of each advertisement, in the boxes below. Please also enter the issue date, your name and address, and return this page.

Issue Date: ____________________________

Please check your primary field of interest:

[] Cell biology
[] Developmental biology
[] Epidemiology
[] Genetics
[] Immunology
[] Microbiology
[] Molecular biology
[] Neurobiology
[] Plant biology
[] Pharmacology
[] Virology
[] Oncology
[] Other
Product News. . . .

Product news features equipment, laboratory materials, and software that may be of interest to readers of this journal. Endorsement by Genome Research, or Cold Spring Harbor Laboratory, is not implied. Readers may obtain further information regarding these products by entering the appropriate numbers on the postage-free Reader Service Card included in this issue.

Human PAC (P1 Artificial Chromosome) Custom Library Screening Service by Hybridization Or PCR

BIOS Laboratories introduces a Human PAC Library Screening Service that utilizes the Roswell Park Cancer Institute (RPCI) Library. For hybridization screening, customers supply BIOS with a DNA fragment and for PCR screening, customers supply a primer set.

The RPCI-1 Human PAC Library/Service offers several advantages: 3X human genome coverage; An average insert size of ∼150 kb; Genomic DNA that is exempt from recombination and rearrangement artifacts. Upon service completion, BIOS provides positive clones and confirmation data. PAC clones may be used for FISH analysis, contig assembly, promoter analysis, or sequencing.

For additional information, call BIOS Laboratories at (800) 678-9487. Reader Service No. 163.

Ultrasensitive Fluorescent Stains For Nucleic Acid Detection in Gels

SYBR® Green Nucleic Acid gel stains are remarkably sensitive fluorescent stains for detecting single and double nucleic acids in electrophoresis gels. SYBR Green I stain is the dye of choice for detecting double stranded nucleic acids and can detect as little as 20 pg dsDNA per band under optimal conditions. SYBR Green II RNA gel stain detects as little as 100 pg RNA or ssDNA per band. Staining with these unique dyes is complete in 20 minutes or less and does not require washing or destaining steps. For a limited time, Molecular Probes is offering a starter kit containing 50 ml of each of the SYBR Green stains, enough to stain 10–50 minigels. Also included in the kit is a photographic filter that is optimized for black and white photography of SYBR Green stained gels.

For additional information, call Molecular Probes, Inc. at (541) 465-8338. Reader Service No. 164.
PCR Primer: A Laboratory Manual
Edited by Carl Dieffenbach, National Institute of Allergy and Infectious Diseases, Gabriela Dveksler, Uniformed Services University of the Health Sciences

From its first-published account in 1985, the polymerase chain reaction has become a standard research tool in a wide range of laboratories. Its impact has been felt in basic molecular biological research, clinical research, forensics, evolutionary studies, and the Human Genome Project. The PCR technique originally conceived by Nobel laureate Kary Mullis has proven to be exceptionally adaptable and has been transformed into a myriad array of methods, each with different applications.

PCR Primer: A Laboratory Manual introduces the complex world of PCR by beginning at an accessible level and then moving to more advanced levels of application. First, the practical requirements for performing PCR and other amplification techniques in the lab are introduced and then the basic aspects of the technique are explained by exploring important issues such as sample preparation, primer design, efficiency, detection of products, and quantitation. Protocols for a wide range of PCR and amplification techniques—each written by an expert investigator—are presented for cloning, sequencing, mutagenesis, library construction and screening, exon trapping, differential display, and expression, and these include RT-PCR, RNA PCR, LCR, multiplex PCR, panhandle PCR, capture PCR, expression PCR, 3' and 5' RACE, in situ PCR, and ligation-mediated PCR. Each protocol is augmented by analysis and troubleshooting sections and complete references.

CONTENTS

Introduction to PCR
Setting Up a PCR Laboratory (C.W. Dieffenbach et al.); A Standard PCR Protocol: Rapid Isolation of DNA and PCR Assay for β-Globin (M.T. Vahey et al.); Enzymatic Control of Carryover Contamination in PCR (J.L. Hartley, A. Rashtchian); Ultraviolet Irradiation of Surfaces to Reduce PCR Contamination (R.W. Cone, M.R. Fairfax); Specificity, Efficiency, and Fidelity of the PCR (R.S. Cha, W.G. Thilly); Optimization and Troubleshooting in PCR (K.H. Roux); Long-Distance PCR (O.S. Foord, E.A. Rose)

Sample Preparation
Rapid Preparation of DNA for PCR Amplification with Gene ReleaserTM (E.P. Dawson et al.); PCR Amplification from Paraffin-embedded Tissues: Sample Preparation and the Effects of Fixation (C.E. Greer et al.); RNA Purification (J.J. Adamovicz, W.C. Gause)

Primer Design
General Concepts for PCR Primer Design (C.W. Dieffenbach et al.); Design and Use of Mismatched and Degenerate Primers (S. Kwok et al.); Multiplex PCR (M.C. Edwards, R.A. Gibbs)

Detection of PCR Products: Quantitation and Analysis
Immunological Detection of PCR Products (J.G. Lazar); Quantitative PCR Using the AmpliSensor Assay (C.N. Wang); DNA Fingerprinting Using Arbitrarily Primed PCR (M. McClelland, J. Welsh); RNA Fingerprinting Using Arbitrarily Primed PCR (M. McClelland, J. Welsh); In Situ PCR (G.I. Nuovo); Single-strand Conformational Polymorphism (K. Fujita, J. Silver); Genetic Subtyping of Human Immunodeficiency Virus Using a Heteroduplex Mobility Assay (E.L. Delwart et al.); Sensitive and Fast Mutation Detection by Solid-phase Chemical Cleavage (L.L. Hansen et al.)

PCR Starting from RNA
Use of the PCR to Quantitate Relative Differences in Gene Expression (W.C. Gause, J.J. Adamovicz); Quantitative Liquid Hybridization PCR Method Employing Storage Phosphor Technology (M.T. Vahey, M.T. Wong); Use of the SNuPE Assay to Quantitate Allele-specific Sequences Differing by a Single Nucleotide (J. Singer-Sam); Trapping Internal and 3'-Terminal Exons (P.E. Nisson et al.); Expression-PCR (D.E. Lanar, K.C. Rain)

PCR-mediated Cloning
Rapid Amplification of cDNA Ends (M.A. Frohman); Panhandle PCR (D.H. Jones); Detection and Identification of Expressed Genes by Differential Display (J.P. Wartio et al.); Construction of Subtractive cDNA Library Using Magnetic Beads and PCR (A. Lonneborg); PCR-based Method for Screening DNA Libraries (D.I. Israel); Screening of YAC Libraries with Robotic Support (M.M. Blanchard, V. Nowotny); Phagemid Display Libraries Derived from PCR-immortalized Rarranged Immunoglobulin Genes (H.H. Hogrefe, B. Shopes)

PCR Sequencing
Direct Sequencing of PCR-amplified DNA (V.B. Rao); Cycle Sequencing (K. Kretz et al.)

Cloning of PCR Products
Strategies for Cloning PCR Products (R. Levis); Cloning and Analysis of PCR-generated Fragments (G.L. Costa, M.P. Weiner)

Mutagenesis by PCR
Mutagenic PCR (R.C. Cadwell, G.F. Joyce); PCR Mutagenesis and Recombination In Vivo (D.H. Jones); Mutagenesis and Synthesis of Novel Recombinant Genes Using PCR (A.N. Vallejo et al.); Rapid PCR Site-directed Mutagenesis (M.P. Weiner, G.L. Costa)

Alternative Amplification Technologies
Ligase Chain Reaction (M. Weidmann et al.); Optimization and Characterization of JSR-based Assays (T.R. Gingeras et al.); One-tube Quantitative HIV-1 RNA NASBA (B. van Gemen et al.)

Appendices
Computer Software for Selecting Primers; Reagents and Equipment

1995, 625 pp. (approx.), illus., appendices, index
Plastic comb binding $95 ISBN 0-87969-448-3
Genes & Development announces an introductory price for new subscribers in 1996!

Tired of waiting for the pass-along copy to reach you? Tired of discovering that the library copy is missing? Tired of missing out on all the important developments reported by Genes & Development twice a month? Now, you too can afford Genes & Development thanks to a new introductory rate!

You too can gain immediate access to the latest breaking news in these areas:
- signal transduction
- cell cycle function
- tumor suppressor genes and oncopgenes
- gene expression
- DNA replication
- pattern formation and regulation during development
- splicing
- chromosome structure and function
- disease models

TIME TO GET YOUR OWN COPY?

SUBSCRIPTION INFORMATION
Volume 10, 1996, containing 24 semimonthly issues

INTRODUCTORY PRICE (U.S.)* $90
INTRODUCTORY PRICE (R.O.W. airlift delivery) $185
Individual Price (U.S.) $120
Individual Price (R.O.W.** airlift delivery) $215
Student Price (U.S.)*** $90
Student Price (R.O.W. airlift delivery) $185
Institutional Price (U.S.) $533.50
Institutional Price (R.O.W. airlift delivery) $628.50

*Only new subscribers may qualify.
**R.O.W. = Rest of world
***Those who qualify must provide student I.D.
ISSN 0890-9369

Subscribe Today!
Cold Spring Harbor Laboratory Press 10 Skyline Drive, Plainview, N.Y. 11803-2500
Phone: 1-800-843-4388 or 516-349-1930 FAX: 516-349-1946
E-mail: cshpress@cshl.org or World Wide Web Site http://www.cshl.org/
Instructions to authors

GENOME RESEARCH welcomes high-quality research papers reporting new data in physical and genetic mapping, DNA sequencing, gene discovery, informatics, statistical and mathematical methods, DNA-based technology development, gene function, genome structure and function, and human disease. The journal also publishes review articles, short reports, and summaries of physical mapping and large-scale sequencing projects. All submissions to the journal will be peer-reviewed.

Publication time from acceptance of manuscript is within two months. For papers accepted subject to revision, only one revised version will be considered; it must be submitted within two months of the provisional acceptance.

The journal accepts papers that present original research that has not previously been published. Submission to the journal implies that a paper is not currently being considered for another journal or book. It is also understood that researchers who submit papers to this journal are prepared to make available to researchers materials needed to duplicate their work. Authors of accepted manuscripts must submit mapping and sequence data to the appropriate data bank and provide an accession number for this data at the page proof stage.

Papers should be submitted to:
Judy Cuddihy, Managing Editor
Genome Research
Cold Spring Harbor Laboratory Press
One Bungtown Road
Cold Spring Harbor, NY 11724
e-mail: cuddihyj@cshl.org

Manuscript preparation

Five copies of the manuscript should be submitted; at least four of these copies should have original art. A cover letter should include: (a) name, address, telephone number, FAX number, and e-mail address of author responsible for correspondence regarding the manuscript; (b) statement that the manuscript has been seen and approved by all listed authors; (c) any specific requirements for reproduction of art; (d) status of any statements of personal communication or other permissions needed; and (e) statement regarding databank submission of data.

The following order of manuscript sections is preferred: title page, abstract, introduction, results, discussion, methods, acknowledgments, references, tables, figure legends. Computer printouts of the manuscript should be of letter quality, and each page should be labeled with the first author’s name and a page number. The methods presented should be detailed enough to allow any qualified researcher to duplicate the results.

References are name/date citations in text; please do not cite by number. Undated citations (unpublished, in preparation, personal communication) should include first initials and last names of authors. The reference list should be presented in alphabetical order. Bibliographic information should be supplied in the following order.

Figures should be supplied as high-quality, glossy prints. All figures should be labeled with the first author’s name, the figure number, and an indication of the top of the figure. The size of the figures will be adjusted to fit the journal format; therefore, please try to keep labels, symbols, and other call-out-devices in proportion to the figure size and detail. Authors wishing to publish four-color art must pay the associated publication costs; price estimates will be provided on acceptance of the paper.

Accepted manuscripts

Paper length in the journal is between 2 and 12 journal pages. A manuscript of 28-32 typed, double-spaced pages with 27 lines of 11 point text per page (a manuscript of 63,000 characters) with 4–6 figures and 1 or 2 tables will translate to 12 printed pages in the journal.

Accepted manuscripts should be supplied as a printed-out manuscript and on a disc to expedite typesetting. Please supply the manuscript as an ASCII text file if possible. If a word-processing file is being sent, please do not include any underscoring, italic, or boldface; spell out special characters (Greek, math); use two carriage returns at the end of each paragraph, subheads, and list items. Indicate on the disc: computer brand name, type of file (text or word-processing), name of software, and disc format. Accepted manuscripts can be e-mailed to cuddihyj@cshl.org, but a confirming printout of the paper should be sent to the journal offices.

Proofs are considered the final form of the paper and corrections can be made only in the case of factual errors. If additional information must be added at this stage, it should be in the form of “Note added in proof,” subject to the approval of the Editors.

To help defray the cost of publication, a charge of $20 per page will be made for publication in Genome Research. Authors unable to meet these charges should include a letter of explanation upon acceptance for publication; inability to meet these charges will have no effect on acceptance and publication of submitted papers.