Break Through...

New advances in sequencing technology allow longer reads and higher throughput, but poor quality template can hold you back. QIAGEN Anion-Exchange Resin gives you the template quality you want, in a format to suit your needs.

Unambiguous Results
QIAGEN anion-exchange technology provides the high quality template DNA essential for optimal automated sequencing — free of contaminants that can reduce accuracy, reproducibility (figure) and read length even at low levels.

Proven Performance
QIAGEN Plasmid Mini Kits offer consistently high yields of ultrapure DNA from convenient gravity flow columns. Each column is packed with QIAGEN Anion-Exchange Resin, the most widely used plasmid purification resin in the world.

High Throughput
For larger sample numbers, the QIAwell system combines QIAGEN Anion-Exchange Resin with Empore® membrane from 3M. Convenient microtiter 8-well strips and 96-well plates provide in-line filtration, purification, desalting and concentration on the QIAvac Manifold.

Maximum Convenience
QIAwell Ultra Plasmid Kits purify up to 48 ultrapure minipreps in just 1 hour, and 96 in just 2 hours. For even greater convenience, the QIAwell system can be used on the QIAGEN BioRobot 9600 automated workstation.

Don’t let template purification hold you back from long reads and high throughput. Upgrade to ultrapure mini-preps from QIAGEN — the leaders in nucleic acid purification.
With Newly Upgraded TaKaRa Restriction Enzymes, Improve Cloning Efficiency in Less Time without Screening in conjunction with the Enforcement Cloning System pKF3.

36 Prime Restriction Enzymes
The highest purity enzyme with the lowest exonuclease activity guaranteed using an innovative QC/QA methodology; the Enforcement Cloning System, highly selective and sensitive with detection of low frequency transfectant caused by trace amount of exonuclease.

Enforcement Cloning System pKF3
(Code No. 6086 for 10 clonings)
Comprised of pKF3 DNA and E. coli TH2 Competent Cells. This system has no cumbersome screening steps and is potent in a variety of applications such as library construction from shotgun cloning, subcloning of PCR products and colony hybridization.

pKF3 DNA:
A Cm\(^{R}\)Sm\(^{R}\)-enforcement plasmid vector contains 44 multi restriction sites within the PO\(_{trp}\)-driven rpsL\(^{4}\)\_am gene.

E. coli TH2 Competent Cells:
Highly competent cells are prepared from the TH2 trpR624 strain with rpsL\(^{+}\), supE\(^{+}\) and trpR\(^{+}\), a variant of HB101, for the exclusive use with the pKF3 vector.

---

Time to Change for the Better

TAKARA SHUZO CO., LTD.
Biomedical Group
Otsu, Shiga, Japan
Phone: +81 775-43-7247
Fax: +81 775-43-9254

TaKaRa Biomedical Europe S.A.
92230 Gennevilliers, France
Phone: (1) 41 47 01 14
Fax: (1) 47 92 18 80

Distributors
North and South Americas
Pan Vera Corporation
Toll Free: (800) 791-1400
Phone: 608-233-5050
Fax: 608-233-3007
e-mail: info@panvera.com

Taiwan: Cheng Chin Trading Co., Ltd.
Phone: (02) 331-3111
Fax: (02) 382-2197

Taiwan: Protech Technology Enterprise Co., Ltd.
Phone: (02) 381-0844
Fax: (02) 311-8524

Malaysia: Interscience Sdn Bhd
Phone: (03) 703-1888
Fax: (03) 703-8047

Singapore: ITS Science and Medical Pte. Ltd.
Phone: (02) 273-0898
Fax: 65-273-0810

Thailand: ITS (Thailand) Co., Ltd.
Phone: (02) 308-0811
Fax: (02) 308-0612

Reader Service No. 142
The answer is... you wouldn’t.

Because Stratagene’s new TaqPlus™ DNA polymerase does it all!

**ROBUST PERFORMANCE**

TaqPlus DNA polymerase boosts PCR yield. For long and short templates. For everyday PCR. Use it instead of Taq, and you’ll understand the meaning of robust PCR!

**LONG PCR**

The robust nature of TaqPlus DNA polymerase makes it ideal for long PCR. It amplifies templates up to 35 kb long. So this potent polymerase is all you need.

**TOUGH TEMPLATES**

TaqPlus DNA polymerase reduces mismatch pausing. So more extension reactions reach completion in each cycle of PCR. Armed with this greater efficiency, TaqPlus DNA polymerase can even tame tough templates to bring out the bands.

TaqPlus™ DNA Polymerase is an optimized blend of Stratagene’s highest quality Taq DNA polymerase and Taq Extender™ PCR additive, the most powerful PCR-enhancement reagent available. 

You’ll never go back to Taq.

**REFERENCES**


Reader Service No. 144
The complete software solution for sequencing DNA

SEQUENCER™ 3.0 on your Mac goes beyond incredibly fast and accurate fragment assembly and efficient contig editing. You also get:

• Vector and transposon screening
• ORF analysis
• Protein translations
• Restriction maps
• A fantastic interface to automated sequencers
• And much more!

Seeing is believing! Request your free SEQUENCER 3.0 demo kit today (includes free restriction mapping software).

800.497.4939 (USA)  +1.313.769.7249 (elsewhere)  +1.313.769.7074 (fax)
NOW ACCELERATED FOR POWER MACINTOSH!

Gene Codes Corporation  2901 Hubbard Street  Ann Arbor, Michigan 48105-2467 USA  info@genecodes.com

Looking for a "hands on" training workshop?

Biotechnology Training Programs has provided "hands on" training workshops in molecular biology laboratory techniques throughout the United States for more than five years.

Our summer workshop locations include: Houston, Seattle, Chicago, Philadelphia, San Francisco, Los Angeles, & San Diego

Workshop topics will include:
Introduction to PCR; Quantitative RNA-PCR; Basic Cloning & Hybridization Techniques; Clinical Applications of PCR; In Situ PCR

To receive our 1995 schedule or to plan a workshop at your facility, please call

BIOTECHNOLOGY TRAINING PROGRAMS, INC.
1-800-821-4861  •  Fax 603-267-1993

FULL SERVICE DNA

Amitof Biotech Inc. is a full service custom DNA facility designed to meet all of your research needs.

• Large Scale Synthesis
• Phosphorothioates
• Flourescent Labelling -FITC, Biotin, and more
• Alkaline Phosphatase
• Minor Bases -Inosine, Uridine, etc.
• Purification -HPLC & Reverse Phase

0.2uM Scale synthesis is standard and all oligos are shipped within 48 hours. We also offer a rush service at no extra charge (please inquire for details.)

For more information call 1-800-998-4863 or FAX your order to 617-782-9352

AMITOF Biotech Inc.
14-20 Linden Street, Boston, MA 02134

Your dependable source for DNA
At New England Biolabs, we are dedicated to producing highly-pure restriction enzymes for the manipulation and analysis of genomic DNA. Our diverse range of 8-base cutters includes recombinant Not I, Asc I and Sfi I. And now, NEB introduces recombinant Fse I which offers both the exceptional purity and unmatched value essential for success in your genomic research.

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Product Code</th>
<th>Units</th>
<th>Enzyme</th>
<th>Product Code</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fse I</td>
<td>#588S</td>
<td>100 units</td>
<td>Pac I</td>
<td>#547S</td>
<td>100 units</td>
</tr>
<tr>
<td></td>
<td>#588L</td>
<td>500 units</td>
<td></td>
<td>#547L</td>
<td>500 units</td>
</tr>
<tr>
<td></td>
<td>5’...G G C C G G C C...3’</td>
<td></td>
<td></td>
<td>5’...T T A A T A A...3’</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3’...C C G G C C G G...5’</td>
<td></td>
<td></td>
<td>3’...A A T T A A T...5’</td>
<td></td>
</tr>
<tr>
<td>Asc I</td>
<td>#558S</td>
<td>500 units</td>
<td>Pme I</td>
<td>#560S</td>
<td>100 units</td>
</tr>
<tr>
<td></td>
<td>#558L</td>
<td>2,500 units</td>
<td></td>
<td>#560L</td>
<td>500 units</td>
</tr>
<tr>
<td></td>
<td>5’...G G C G C G C C...3’</td>
<td></td>
<td></td>
<td>5’...G T T T A A A C...3’</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3’...C C G C G C C G G...5’</td>
<td></td>
<td></td>
<td>3’...C C A A A T T G...5’</td>
<td></td>
</tr>
<tr>
<td>Not I</td>
<td>#189S</td>
<td>500 units</td>
<td>Sfi I</td>
<td>#123S</td>
<td>2,000 units</td>
</tr>
<tr>
<td></td>
<td>#189L</td>
<td>2,500 units</td>
<td></td>
<td>#123L</td>
<td>10,000 units</td>
</tr>
<tr>
<td></td>
<td>5’...G G C G C G C C...3’</td>
<td></td>
<td></td>
<td>5’...G G C C N N N G G C C...3’</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3’...C C G G C C G G...5’</td>
<td></td>
<td></td>
<td>3’...C C G N N N N G G C G G...5’</td>
<td></td>
</tr>
</tbody>
</table>

For more information on 8-Base Cutters from New England Biolabs, call 1-800-NEB-LABS or via the Internet: info@neb.com

NEB home page: http://www.neb.com

New England Biolabs Inc. 32 Tozer Road, Beverly, MA 01915 USA 1-800-NEB-LABS Tel. (508) 927-5054 Fax (508) 921-1050 email: info@neb.com
New England Biolabs Ltd., Canada Tel. (800) 357-1005 (905) 672-3307 Fax (905) 672-3444 email: info@ca.neb.com
New England Biolabs GmbH, Federal Republic of Germany Tel. (0130) 83 30 31 (06196) 3033 Fax (06196) 83639 email: info@de.neb.com
New England Biolabs (UK) Ltd. Tel. (0800) 31 84 86 (01462) 420616 Fax (01462) 421057 email: info@uk.neb.com

DISTRIBUTORS: Australia (03) 94-0299; Belgium (02) 995-9847; Brazil (011) 58-2560; Denmark (34) 58 26-00; Finland (08) 443-8077; France (1) 36 64 00 49; Greece (02) 523251; Hong Kong (852) 2698; India (011) 539-I227; Israel (03) 3810371; Italy (02) 375-0071; Japan (03) 3722-9671; Korea (02) 566-2031; Mexico (5) 519-3463; Netherlands (030) 455-9694; New Zealand (09) 418-3039; Norway 22 22 04 15; Singapore 4457927; Sweden (08) 7346300; Switzerland (081) 481 47 12; Taiwan (02) 1102913

Reader Service No. 148
# 1996 Courses

<table>
<thead>
<tr>
<th>Spring Application</th>
<th>Deadline: January 15, 1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Genome Sequence Analysis</td>
<td>March 20 - April 2</td>
</tr>
<tr>
<td>Cloning &amp; Analysis of Large DNA Molecules</td>
<td>April 10 - 23</td>
</tr>
<tr>
<td>Hadi Abderrahim, Bruce Birren, Harold Riehman</td>
<td></td>
</tr>
<tr>
<td>Protein Purification and Characterization</td>
<td>April 10 - 23</td>
</tr>
<tr>
<td>Richard Burgess, Al Courey, Sue-Hwa Lin, Sheenah Mische</td>
<td></td>
</tr>
<tr>
<td>Early Development of Xenopus Laevis</td>
<td>April 12 - 21</td>
</tr>
<tr>
<td>Robert Grunder, Hazel Sive</td>
<td></td>
</tr>
<tr>
<td>Summer Application Deadline: March 15, 1996</td>
<td></td>
</tr>
<tr>
<td>Advanced Bacterial Genetics</td>
<td>June 7 - 27</td>
</tr>
<tr>
<td>Bonnie Bassler, Colin Manoil, Nancy Trun</td>
<td></td>
</tr>
<tr>
<td>Molecular Approaches to Ion Channel Structure, Expression &amp; Function</td>
<td>June 7 - 27</td>
</tr>
<tr>
<td>John Caldwell, Rock Levinson, Robert Maue</td>
<td></td>
</tr>
<tr>
<td>Molecular Embryology of the Mouse</td>
<td>June 7 - 27</td>
</tr>
<tr>
<td>Richard Behringer, Virginia Papsioannou</td>
<td></td>
</tr>
<tr>
<td>Genetic Epidemiologic Studies of Complex Diseases</td>
<td>June 11 - 18</td>
</tr>
<tr>
<td>Neil Risch, Elizabeth Squires-Wheeler</td>
<td></td>
</tr>
<tr>
<td>Neurobiology of Human Neurological Disease: Mechanisms of Neurodegeneration</td>
<td>June 20 - 26</td>
</tr>
<tr>
<td>Sam Gandy, William Moberly, Stan Prusiner</td>
<td></td>
</tr>
<tr>
<td>Computational Neuroscience: Vision</td>
<td>June 28 - July 11</td>
</tr>
<tr>
<td>David Heeger, Michael Shadlen, Eero Simoncilli</td>
<td></td>
</tr>
<tr>
<td>Arabidopsis Molecular Genetics</td>
<td>July 1 - 21</td>
</tr>
<tr>
<td>Xing-Wang Deng, Robert Last, Daphne Press</td>
<td></td>
</tr>
<tr>
<td>Molecular Cloning of Neural Genes</td>
<td>July 1 - 21</td>
</tr>
<tr>
<td>Instructors to be announced</td>
<td></td>
</tr>
<tr>
<td>Neurobiology of Drosophila</td>
<td>July 1 - 21</td>
</tr>
<tr>
<td>Dipam Patel, Barbara Taylor, Tim Tully</td>
<td></td>
</tr>
<tr>
<td>Molecular Neurobiology: Brain Development &amp; Function</td>
<td>July 14 - 27</td>
</tr>
<tr>
<td>Ronald McKay, Erin Schuman</td>
<td></td>
</tr>
<tr>
<td>Advanced Molecular Cloning &amp; Expression of Eukaryotic Genes</td>
<td>July 24 - August 13</td>
</tr>
<tr>
<td>Kenneth Burtis, Marc Learned, Stephen Smale</td>
<td></td>
</tr>
<tr>
<td>Imaging Structure &amp; Function in the Nervous System</td>
<td>July 24 - August 13</td>
</tr>
<tr>
<td>Arthur Konnerth, Fred Lanni</td>
<td></td>
</tr>
<tr>
<td>Yeast Genetics</td>
<td>July 24 - August 13</td>
</tr>
<tr>
<td>Allison Adams, Daniel Goshchling, Chris Kaiser</td>
<td></td>
</tr>
<tr>
<td>Advanced Drosophila Genetics</td>
<td>July 30 - August 12</td>
</tr>
<tr>
<td>Michael Asburner, Scott Hawley</td>
<td></td>
</tr>
<tr>
<td>Tentative 1996 Fall Courses Dates and Instructors to be announced</td>
<td></td>
</tr>
<tr>
<td>Macromolecular Crystallography</td>
<td></td>
</tr>
<tr>
<td>Analysis &amp; Genetic Manipulation of Yeast Artificial Chromosomes</td>
<td></td>
</tr>
<tr>
<td>Advanced In Situ Hybridization &amp; Immunocytochemistry</td>
<td></td>
</tr>
<tr>
<td>Computational Genomics</td>
<td></td>
</tr>
<tr>
<td>Monoclonal Antibodies from Combinatorial Libraries</td>
<td></td>
</tr>
<tr>
<td>Zebrafish Development Genetics</td>
<td>April 24 - 28</td>
</tr>
<tr>
<td>Nigel Holder, Nancy Hopkins, Philip Ingham, Christiane Nusslein-Volhard, Monte Westerfield</td>
<td></td>
</tr>
<tr>
<td>Abstract Deadline, February 7, 1996</td>
<td></td>
</tr>
<tr>
<td>Molecular Chaperones and the Heat Shock Response</td>
<td>May 1 - 5</td>
</tr>
<tr>
<td>Costa Georgopulos, Susan Lindquist, Rick Morimoto</td>
<td></td>
</tr>
<tr>
<td>Abstract Deadline, February 14, 1996</td>
<td></td>
</tr>
<tr>
<td>Genome Mapping &amp; Sequencing</td>
<td>May 8 - 12</td>
</tr>
<tr>
<td>David Bentley, Eric Green, Philip Hieter</td>
<td></td>
</tr>
<tr>
<td>Abstract Deadline, February 28, 1996</td>
<td></td>
</tr>
<tr>
<td>Retroviruses</td>
<td>May 21 - 26</td>
</tr>
<tr>
<td>Ron Desrosiers, Anna Marie Skalka</td>
<td></td>
</tr>
<tr>
<td>Abstract Deadline, March 6, 1996</td>
<td></td>
</tr>
<tr>
<td>61st Symposium: Function &amp; Dysfunction in the Nervous System</td>
<td>May 29 - June 5</td>
</tr>
<tr>
<td>Bruce Stillman</td>
<td></td>
</tr>
<tr>
<td>Abstract Deadline, March 13, 1996</td>
<td></td>
</tr>
<tr>
<td>Cancer Genetics &amp; TumorSuppressor Genes</td>
<td>August 14 - 18</td>
</tr>
<tr>
<td>Anton Berns, Terri Grodzicki, Ed Harlow, David Livingston, Carol Prives, Bert Vogelstein</td>
<td></td>
</tr>
<tr>
<td>Abstract Deadline, May 29, 1996</td>
<td></td>
</tr>
<tr>
<td>Molecular Genetics of Bacteria &amp; Phages</td>
<td>August 20 - 25</td>
</tr>
<tr>
<td>Carol Gross, Jeff Roberts, Marjorie Russel</td>
<td></td>
</tr>
<tr>
<td>Abstract Deadline, June 5, 1996</td>
<td></td>
</tr>
<tr>
<td>Mouse Molecular Genetics</td>
<td>August 28 - September 1</td>
</tr>
<tr>
<td>Rosa Beddington, Allan Bradley, Rob Krumlauf, Liz Robertson</td>
<td></td>
</tr>
<tr>
<td>Abstract Deadline, June 12, 1996</td>
<td></td>
</tr>
<tr>
<td>Translational Control</td>
<td>September 4 - 8</td>
</tr>
<tr>
<td>Richard J. Jackson, Michael Mathews, Marvin Wickens</td>
<td></td>
</tr>
<tr>
<td>Abstract Deadline, June 19, 1996</td>
<td></td>
</tr>
<tr>
<td>Molecular Approaches to the Control of Infectious Diseases</td>
<td>September 9 - 13</td>
</tr>
<tr>
<td>Fred Brown, Dennis Burton, John Mekalanos, Erling Norby</td>
<td></td>
</tr>
<tr>
<td>Abstract Deadline, June 26, 1996</td>
<td></td>
</tr>
<tr>
<td>Molecular Biology of Hepatitis B Viruses</td>
<td>September 18 - 22</td>
</tr>
<tr>
<td>Robert Lanford, Michael Nossal</td>
<td></td>
</tr>
<tr>
<td>Abstract Deadline, July 3, 1996</td>
<td></td>
</tr>
<tr>
<td>Gene Therapy</td>
<td>September 25 - 29</td>
</tr>
<tr>
<td>Theodore Friedmann, Richard Mulligan, Gary Nabel, David Weatherall</td>
<td></td>
</tr>
<tr>
<td>Abstract Deadline, July 10, 1996</td>
<td></td>
</tr>
<tr>
<td>Learning &amp; Memory</td>
<td>October 2 - 6</td>
</tr>
<tr>
<td>Per Anderson, Eric Kandel, Richard F. Thompson, Susumu Tonegawa</td>
<td></td>
</tr>
<tr>
<td>Abstract Deadline, July 17, 1996</td>
<td></td>
</tr>
</tbody>
</table>

# 1996 Meetings

- **Molecular Genetics of Bacteria & Phages**
  - **Meeting Date:** August 20 - 25
  - **Instructors:** Carol Gross, Jeff Roberts, Marjorie Russel
  - **Abstract Deadline:** June 5, 1996

- **Mouse Molecular Genetics**
  - **Meeting Date:** August 28 - September 1
  - **Instructors:** Rosa Beddington, Allan Bradley, Rob Krumlauf, Liz Robertson
  - **Abstract Deadline:** June 12, 1996

- **Translational Control**
  - **Meeting Date:** September 4 - 8
  - **Instructors:** Richard J. Jackson, Michael Mathews, Marvin Wickens
  - **Abstract Deadline:** June 19, 1996

- **Molecular Approaches to the Control of Infectious Diseases**
  - **Meeting Date:** September 9 - 13
  - **Instructors:** Fred Brown, Dennis Burton, John Mekalanos, Erling Norby
  - **Abstract Deadline:** June 26, 1996

- **Molecular Biology of Hepatitis B Viruses**
  - **Meeting Date:** September 18 - 22
  - **Instructors:** Robert Lanford, Michael Nossal
  - **Abstract Deadline:** July 3, 1996

- **Gene Therapy**
  - **Meeting Date:** September 25 - 29
  - **Instructors:** Theodore Friedmann, Richard Mulligan, Gary Nabel, David Weatherall
  - **Abstract Deadline:** July 10, 1996

- **Learning & Memory**
  - **Meeting Date:** October 2 - 6
  - **Instructors:** Per Anderson, Eric Kandel, Richard F. Thompson, Susumu Tonegawa
  - **Abstract Deadline:** July 17, 1996

---

**Meetings and Courses Office**

Cold Spring Harbor Laboratory
1 Bungtown Road, PO Box 100
Cold Spring Harbor, N.Y. 11724-2213

Email: meetings@cshl.org Fax: 516-367-8845
Phone: 516-367-8346 [visit site: http://www.cshl.org/]

---
PCR Primer: A Laboratory Manual

Edited by Carl Dieffenbach, National Institute of Allergy and Infectious Diseases, Gabriela Dveksler, Uniformed Services University of the Health Sciences

From its first-published account in 1985, the polymerase chain reaction has become a standard research tool in a wide range of laboratories. Its impact has been felt in basic molecular biological research, clinical research, forensics, evolutionary studies, and the Human Genome Project. The PCR technique originally conceived by Nobel laureate Kary Mullis has proven to be exceptionally adaptable and has been transformed into a myriad array of methods, each with different applications.

PCR Primer: A Laboratory Manual introduces the complex world of PCR by beginning at an accessible level and then moving to more advanced levels of application. First, the practical requirements for performing PCR and other amplification techniques in the lab are introduced and then the basic aspects of the technique are explained by exploring important issues such as sample preparation, primer design, efficiency, detection of products, and quantitation. Protocols for a wide range of PCR and amplification techniques—each written by an expert investigator—are presented for cloning, sequencing, mutagenesis, library construction and screening, exon trapping, differential display, and expression, and these include RT-PCR, RNA PCR, LCR, multiplex PCR, panhandle PCR, capture PCR, expression PCR, 3' and 5' RACE, in situ PCR, and ligation-mediated PCR. Each protocol is augmented by analysis and troubleshooting sections and complete references.

CONTENTS

Introduction to PCR
Setting Up a PCR Laboratory (C.W. Dieffenbach et al.); A Standard PCR Protocol: Rapid Isolation of DNA and PCR Assay for β-Globin (M.T. Vahey et al.); Enzymatic Control of Carboxyl Termination in PCR (J.L. Hartley, A. Rashchian); Ultraviolet Irradiation of Surfaces to Reduce PCR Contamination (R.W. Cone, M.R. Fairfax); Specificity, Efficiency, and Fidelity of the PCR (R.S. Cha, W.G. Thilly); Optimization and Troubleshooting in PCR (K.H. Roux); Long-Distance PCR (O.S. Foord, E.A. Rose)

Sample Preparation
Rapid Preparation of DNA for PCR Amplification with Gene Releaser™ (E.P. Dawson et al.); PCR Amplification from Paraffin-embedded Tissues: Sample Preparation and the Effects of Fixation (C.E. Greer et al.); RNA Purification (J.J. Adamovicz, W.C. Gause)

 Primer Design
General Concepts for PCR Primer Design (C.W. Dieffenbach et al.); Design and Use of Mismatched and Degenerate Primers (S. Kwok et al.); Multiplex PCR (M.C. Edwards, R.A. Gibbs)

Detection of PCR Products: Quantitation and Analysis
Immunological Detection of PCR Products (J.G. Lazar); Quantitative PCR Using the AmpliSensor Assay (C.N. Wang); DNA Fingerprinting Using Arbitrarily Primed PCR (M. McClelland, J. Welsh); RNA Fingerprinting Using Arbitrarily Primed PCR (M. McClelland, J. Welsh); In Situ PCR (G.J. Nuovo); Single-strand Conformational Polymorphism (K. Fujita, J. Silver); Genetic Subtyping of Human Immunodeficiency Virus Using a Heteroduplex Mobility Assay (E.L. Delwart et al.); Sensitive and Fast Mutation Detection by Solid-phase Chemical Cleavage (L.L. Hansen et al.)

PCR Starting from RNA
Use of the PCR to Quantitate Relative Differences in Gene Expression (W.C. Gause, J.J. Adamovicz); Quantitative Liquid Hybridization PCR Method Employing Storage Phosphor Technology (M.T. Vahey, M.T. Wong); Use of the SNuPE Assay to Quantitate Allele-specific Sequences Differing by a Single Nucleotide (J. Singer-Sam); Trapping Internal and 3'-Terminal Exons (P.E. Nisson et al.); Expression-PCR (D.E. Lanar, K.C. Kain)

PCR-mediated Cloning
Rapid Amplification of cDNA Ends (M.A. Frohman); Panhandle PCR (D.H. Jones); Detection and Identification of Expressed Genes by Differential Display (P. Warthoe et al.); Construction of Subtractive cDNA Libraries Using Magnetic Beads and PCR (A. Lonneborg); PCR-based Method for Screening DNA Libraries (D.I. Israel); Screening of YAC Libraries with Robotic Support (M.M. Blanchard, V. Nowotny); Phagemid Display Libraries Derived from PCR-immortalized Rearranged Immunoglobulin Genes (H.H. Hogrefe, B. Shopes)

PCR Sequencing
Direct Sequencing of PCR-amplified DNA (V.B. Rao); Cycle Sequencing (K. Kretz et al.)

Cloning of PCR Products
Strategies for Cloning PCR Products (R. Levis); Cloning and Analysis of PCR-generated Fragments (G.L. Costa, M.P. Weiner)

Mutagenesis by PCR
Mutagenic PCR (R.C. Cadwell, G.F. Joyce); PCR Mutagenesis and Recombination In Vivo (D.H. Jones); Mutagenesis and Synthesis of Novel Recombinant Genes Using PCR (A.N. Vallejo et al.); Rapid PCR Site-directed Mutagenesis (M.P. Weiner, G.L. Costa)

Alternative Amplification Technologies
Ligase Chain Reaction (M. Weidmann et al.); Optimization and Characterization of 3SR-based Assays (T.R. Gingras et al.); One-tube Quantitative HIV-1 RNA NASBA (B. van Gemen et al.)

Appendices
Computer Software for Selecting Primers; Reagents and Equipment

1995, 625 pp. (approx.), illus., appendices, index
Plastic comb binding $95 ISBN 0-87969-448-3

To order, or request additional information
Call: 1-800-843-4388 (Continental U.S. and Canada) 516-349-1930 (All other locations)
FAX: 516-349-1946
E-MAIL: cshpress@cshl.org or World Wide Web Site http://www.cshl.org/
Write: CSHL Press, 10 Skyline Drive, Plainview, NY 11803-2500

Reader Service No. 150
GENOME RESEARCH
"I NEED IT NOW" READER SERVICE CARD
FAX # 516-367-8334
When you need information fast, don't wait for the mail!
Simply fill out this page and either FAX it, email it,
or call us up and tell us!

Name ____________________________
Title ________________________________
Organization ____________________________
Address ______________________________
City __________________ State _______ Zip Code ______
Postal Code __________ Country __________
Telephone __________ FAX __________

Are you a subscriber?
☐ Yes ☐ No

Is this a pass-along copy?
☐ Yes ☐ No

For further information about advertise-
ments and new products, write the reader
service number(s), located at the bottom of
each advertisement, in the boxes below.
Please also enter the issue date, your name
and address, and return this page.

Issue Date: ____________________________

Please check the title(s) that most
closely describe(s) your position:
☐ Professor
☐ Graduate student
☐ Postdoctoral scientist
☐ Lab director
☐ Lab technician
☐ Medical student
☐ Undergraduate student
☐ Librarian
☐ Publisher

Please check your employment
category:
☐ University/college
☐ Research institute/foundation
☐ Hospital
☐ Medical school
☐ Industry
☐ Government
☐ Library/information center

Please check your primary
field of interest:
☐ Biochemistry

☐ Cell biology
☐ Developmental biology
☐ Epidemiology
☐ Genetics
☐ Immunology
☐ Microbiology
☐ Molecular biology
☐ Neurobiology
☐ Plant biology
☐ Pharmacology
☐ Virology
☐ Oncology
☐ Other

FAX: 516-367-8334
TELEPHONE: 516-367-8351
EMAIL: dufton@cshl.org