ACE. See Angiotensin-converting enzyme
Acute lymphoblastic leukemia (ALL), 167–171
Acute lymphoblastic leukemia (ALL), 178–184
Acute myelogenous leukemia, detection of 6–12
Adenocarcinoma, assessment and semiquantification of gene amplification from archival material, 178–184
AGLCR. See Asymmetric gap ligase chain reaction
ALL. See Acute lymphoblastic leukemia
Alleles
detection of loss in a model hematopoietic neoplasm, 6–12
determination of frequencies in pooled DNA samples, 13–18
microsatellite, separation by PhastSystem, 380–381
specific oligonucleotide probes (ASOs), in diagnostic test for Gau-cher disease, 1–5
Alu repeat sequences, internal direct and inverted Alu, effect on PCR, 109–116
Amplification
of DNA fingerprint profiles, comparison of gel matrices, 50–51
of DNA segments using vectorette PCR, 71–75
of DNA with arbitrary primers, and buffer components, 59–61
efficiencies in competitive PCR for determination of mRNA, 219–226
gene fragments with very high G/C content, 124–125
of immunoglobulin genes from mouse hybridoma cells, by PCR, 256–264
inhibited by reverse transcriptase, 62–65
of long sequences, genomic DNA, 294–298
of MLO DNA from plant host species, 56–58
from paraffin wax-embedded archival material, 178–184
and rapid isolation of cDNA clones, 126–128
refractory mutation system—PCR (ARMS—PCR), low-density lipoprotein receptor gene screening, 352–356
total coding sequence, NF1 gene, peripheral blood lymphocyte RNA, 311–313
Angiotensin-converting enzyme mRNA, quantitation in smooth muscle cells by PCR, 167–171
Apolipoprotein receptor gene screen-ing, 303–304
Assay for angiotensin-converting enzyme mRNA, 167–171
Amplicon size, determination of, 283–287
Artifact formation, correcting for, and computation of genetic similarity coefficients, 38–43
effects of, and computation of genetic similarity coefficients, 31–37
PCR, 109–116
ASOs. See Allele-specific oligonucleotides
Asymmetric gap ligase chain reaction (AGLCR), 80–84
Background-minimized cassette mutagenesis—PCR (BMCM—PCR), using cassette-specific selection markers, 212–218
Bacteria. See also Mycoplasma
contamination of cell cultures, PCR-based detection of, 199–208
lysates, DNA fingerprinting using, 265–268
BAGS. See Batched analysis of genotypes
Batched analysis of genotypes (BAGS), 331–336
Bead, magnetic M-280—streptavidin, purification of single-stranded DNA, 227–233
Bending locus, of DNA molecules, 44–45
BMCM—PCR. See Background-minimized cassette mutagenesis—PCR
Buffer components, for DNA amplification with arbitrary primers, 59–61
CAL. See Coupled amplification and oligonucleotide ligation
Cancer. See also specific types
assessment and semiquantification of gene amplification from archival material, 178–184
tissues, detection of p53 gene mutation, by nonradioactive direct sequencing, 76–79
Capillary electrophoresis (CE), hybridization analysis of PCR products by, 303–304
Cassette ligation, and end trimming with PCR to clone exon—intron boundaries, 19–25
Catch-linker + PCR labeling, method to generate hapten-labeled DNA fragments from YAC, 209–211
cDNA clones, isolation by aliquot testing + PCR, 126–128
cDNA libraries, PCR screening, 126–128
CE. See Capillary electrophoresis
Cell culture contamination, PCR-based detection of, 199–208
Chemiluminescence detection, in diagnostic test for Gau-cher disease, 1–5
detection system, in nonisotopic SSCP protocol, 52–55
technique for the detection of p53 gene mutation in cancer tissues, 76–79
Chromosome 5q–, method for detection of allele loss in, 6–12
Cloning exon—intron boundaries, PCR with end trimming and cassette ligation, 19–25
Coefficients, genetic similarity, computation for use with RAPD data, 31–37, 38–43
Colinearity, between large cloned DNA fragments and genomic DNA, 129–132
Colorimetric technique, for the detection of p53 gene mutation in cancer tissues, 76–79
Competitive PCR
deletion mutant quantitative PCR assay for angiotensin-converting enzyme mRNA, 167–171
evaluation of competitor type and size for use in the determination of mRNA, 219–226
transcription-based system, 363–367
Contamination
cell cultures, detected by PCR, 199–208
PCR, 117–123
Coupled amplification and oligonucleotide ligation (CAL), for multiplex genetic typing, 337–345
Curvature, DNA, 44–45
Cytochrome b gene, species identification of highly processed meats, 241–243
ddf. See Dideoxy fingerprinting
Decontamination systems, reliability in PCR, 117–123
Degenerate oligonucleotide-primed PCR (DOP—PCR), to generate probes from yeast artificial chromosomes, 209–211
Degenerate RAPD primers (D-RAPD), in DNA fingerprinting of bacterial lysates, 265–268
Deletion mutants, quantitative PCR assay for angiotensin-converting enzyme mRNA, 167–171
Deoxyinosine, use of primers containing, with DNA polymerases and proofreading activity, 239–240

Detection
- allele loss in hematopoietic neoplasms, 6–12
- allele loss in myeloid disorders, 6–12
- chemiluminescence in diagnostic test for Gaucher disease, 1–5
- contamination in cell cultures by PCR, 199–208

Electrochemiluminescence, in competitive PCR assay, 327–330
- genetic polymorphisms in eukaryotic taxa, by PCR, 249–255
- HCV RNA by the asymmetric gap ligase chain reaction, 80–84
- mollicutes, contamination of cell cultures, 199–208
- mycoplasmas by PCR-based method, 199–208
- nonradioactive competitive PCR assay, 327–330
direct sequencing, detection of p53 gene mutation in cancer tissues, 76–79
- multiplex PCR screening, 352–356
- single-strand conformation polymorphism protocol, for genetic screening, 52–55
- p53 gene mutation in cancer tissues, 76–79
- polymorphisms, 227–233
- quantitation of revertants of oral poliovirus vaccine, 62–65
- reverse transcriptase—PCR products, 234–238
- single-base substitutions in PCR-amplified DNA, 188–190

Diabetes-associated gene, p69(ICA1), 154–159

Diagnostic test, Gaucher disease, 1–5
- Dideoxy fingerprinting (ddF) and SSCP, 97–108
- Direct blotting electrophoresis, for genetic screening, 52–55
- Disease, genetic, diagnosis, 188–190
- DNA
 - allele frequencies in pooled samples, 13–18
 - amplification with arbitrary primers, and buffer components, 59–61
 - based markers in genome regions by two-primer RAPD reactions, 346–351
 - bending locus, PCR mapping, 44–45
 - buffer components for amplification with arbitrary primers, 59–61
 - curvature, 44–45
 - extraction method for PCR of MLO DNA from plant host species, 56–58
- extraction procedure, 368–370
- fingerprint profiles, gel matrices for resolving PCR-amplified, 50–51
- fingerprinting, crude bacterial lysates using degenerate RAPD primers, 265–268
- flanking genomic, method of amplifying, 19–25
- fragments and genomic DNA, assessment of colinearity, 129–132
- genomic, quantitation of methylation differences, 26–30
- library screening, 46–49
- mitochondrial, sequences used to identify the species origin of highly processed meats, 241–243
- nonspecific synthesis during in situ PCR and solution-phase PCR, 89–96
- PCR-amplified, detection of single-base substitutions, 188–190
- PCR-based method to map the binding locus of, 44–45
- polymerase UITma, PCR with deoxyinosine-containing primers using, 239–240
- polymers with proofreading activity, used with deoxyinosine-containing primers, 239–240
- pooling, and determination of microsatellite allele frequencies, 13–18
- segments isolated using vectorette and subvectorette PCR, 71–75
- sequences, repeated, effect on PCR, 109–116
- single-stranded conformational polymorphism analysis results in enhanced polymorphism detection, 227–233
- conformation polymorphism and dideoxy fingerprinting, 97–108
- conformation polymorphism protocol, nonisotopic protocol, 52–55
- purified by magnetic M-280—strepavidin beads, 227–233
- tails, length requirement, for ligation-independent cloning of PCR products, 172–177
- stain, SYBR Green I, 234–238
- synthesis, nonspecific, during in situ PCR and solution-phase PCR, 89–96
- DOP—PCR. See Degenerate oligonucleotide-primed PCR
- D-RAPD. See Degenerate RAPD primers
- Dyes, fluorescent, in quenched probe system, 357–362
- Electrochemiluminescence
 - Electrochemiluminescence (ECL) detection in competitive PCR assay, 327–330

Electrophoresis, direct blotting in nonisotopic SSCP protocol, 52–55
End trimming, and cassette ligation with PCR to clone exon—intron boundaries, 19–25
- Enzyme, multisubstrate, structure—function relationships, 212–218
- Errata, 65
- ETCL—PCR. See PCR with end trimming and cassette ligation
- Evaluation, competitor type and size for, in competitive PCR, 219–226
- Exon—intron boundaries, cloning, and PCR with end trimming and cassette ligation, 19–25

Familial hypercholesterolemia (FH), screening, 352–356
- Ferritin multigene family, analyzed by PCR, 85–88
- FH. See Familial hypercholesterolemia
- FISH. See Fluorescence in situ hybridization
- Fluorescence
 - based—SSCP analysis, 275–282
 - in situ hybridization (FISH) probes, method for generating, from yeast artificial chromosomes, 209–211
 - RT—PCR, analysis of gene expression in tissues, 154–159
 - Fluorescent dyes, oligonucleotides in quenched probe system, 357–362

G/C-rich sequences and PCR amplification, 124–125
- Gap ligase chain reaction (gLCR), 80–84
- GAS. See Group A streptococci
- Gaucher disease (GD), diagnostic test, 1–5
- GD. See Gaucher disease
- Gel matrices, resolving PCR-amplified DNA fingerprint profiles, 50–51
- Gene
 - amplification from archival material, method for semiquantification, 178–184
 - cytochrome b, for species identification of highly processed meats, 241–243
 - expression in tissues analyzed by RT—PCR and laser-induced fluorescence, 154–159
 - fragments with very high G/C content and amplification, 124–125
 - mutation in cancer tissues, p53 detection by nonradioactive direct sequencing, 76–79
 - mutation, screening, low-density lipoprotein receptor, 352–356
- NFI total coding sequence amplification, 311–313
Genetic screening
Genomic DNA
Genetic typing, 331-336, 337-345
Genetic similarity coefficients computed from RAPD data
correcting for PCR artifacts, 38-43
effects of PCR artifacts, 31-37
Genetic similarity
Genotypes, batched analysis, 331-336
Genomic fingerprinting, microsatellite-
Klenow assembly/extension—Pfu polymerase amplification (KAPPA), 299-302
Genetic screening
for disorders, 1-5, 6-12, 52-55
and single-strand conformation polymorphism, 52-55
Genetic similarity coefficients computed from RAPD data
correcting for PCR artifacts, 38-43
effects of PCR artifacts, 31-37
Genetic similarity
Genotypes, batched analysis, 331-336
Genomic fingerprinting, microsatellite-
Klenow assembly/extension—Pfu polymerase amplification (KAPPA), 299-302
Genomic DNA
amplification of long sequences, 294-298
and DNA fragments, assessment of colinearity, 129-132
Genomic fingerprinting, microsatellite-
primed PCR, 249-255
Genomic regions, quantitation of methylation of, 26-30
Genotypes, batched analysis, 331-336
glCR. See Gap ligase chain reaction
Group A streptococci (GAS), typing, by PCR method, 288-293
H ferritin multigene family, analyzed by PCR, 85-88
Hairpin ribozyme, alteration of specificity using PCR, 139-144
Hapten-labeled DNA fragments, generated from a trace amount of YAC, 209-211
HCV. See Hepatitis C virus
Heart tissue, archival, mitochondrial DNA analysis, 309-310
Hematologic malignancy, quantitation of gene methylation alterations for diagnosis or prognosis, 26-30
Hematopoietic neoplasm, detection of allele loss, 6-12
Hepatitis C virus (HCV) RNA, detection by the asymmetric gap ligase chain reaction, 80-84
Heteroduplex detection, of single-base substitutions in PCR-amplified DNA, 188-190
Hpall-digested template, quantitation of, to monitor methylation alterations in hematologic malignancies, 26-30
Hybridization analysis, of PCR products by capillary electrophoresis, 303-304
Hybridoma cells, mouse, immunoglobulin genes from, amplified by PCR, 256-264
Immunoglobulin genes, mouse hybridoma, amplified by PCR, 256-264
Inhibition, of PCR, and stimulation of primer—dimer formation by reverse transcriptase, 62-65
In situ PCR analysis, of nonspecific DNA synthesis, 89-96
Jumping reaction, in PCR, 109-116
KAPPA. See Klenow assembly/extension—Pfu polymerase amplification
Klenow assembly/extension—Pfu polymerase amplification (KAPPA), 299-302
Laser-induced fluorescence (LIF), and RT—PCR, analysis of gene expression in tissues, 154-159
LCR. See Ligase chain reaction
LDLR gene mutations. See Low-density lipoprotein receptor gene mutations
Length, requirement for single-stranded tails for ligation-independent cloning of PCR products, 172-177
Libraries, cDNA screening, by PCR, 46-49, 126-128
LIC. See Ligation-independent cloning
LIF. See Laser-induced fluorescence
Ligase chain reaction (LCR), 80-84
Ligation-independent cloning (LIC) of PCR products, length requirement of single-stranded tails, 172-177
Lipoprotein receptor gene mutations, screening, 352-356
Low-density lipoprotein receptor (LDLR) gene mutations, screening, 352-356
Lymphocytes, RNA extraction for RT—PCR, comparison of methods, 185-187
Magnetic M-280—streptavidin beads, purification of single-stranded DNA, 227-233
Manual Supplement, contents, 69, 137, 197, 248, 316, 382
Mapping, bending locus of DNA molecules, 44-45
MAPREC. See Mutant analysis by PCR and restriction enzyme cleavage
Meat products, highly processed, identified by mitochondrial DNA sequences, 241-243
Metastable single-strand DNA conformational polymorphism (mSSCP) analysis enhanced polymorphism detection, 227-233
Methylation, quantitation of, in specific genomic regions, 26-30
MF—PCR—SSCP. See Multiple fluorescence-based PCR single-strand conformation polymorphism
Microsatellite allele separation, with PhastSystem, 380-381
determining allele frequencies in pooled DNA samples, 13-18
markers, 331-336
primed PCR, genomic fingerprinting, 249-255
Minisatellite variant repeat PCR (MVR—PCR), 71-75
Mitochondrial DNA analysis, archival heart tissue, 309-310
sequences used to identify the species origin of highly processed meats, 241-243
MLOs. See Mycoplasma-like organisms
Mollicutes, contamination of cell cultures, PCR-based detection, 199-208
Mouse hybridoma cells, immunoglobulin genes from, amplified by PCR, 256-264
mRNA angiotensin-converting enzyme, quantitation by PCR, 167-171
determination by competitive PCR, 219-226
polyadenylation states, PCR analysis, 317-321
species quantitation, by RT—PCR, on total mRNA population, 160-166
mSSCP. See Metastable single-strand DNA conformational polymorphism
Multigene family, H ferritin, PCR analysis, 85-88
Multiple fluorescence-based PCR single-strand conformation polymorphism (MF—PCR—SSCP), 275-282
Multiplex PCR approach, in nonisotopic SSCP protocol, 52-55
bcr—abl in fusion transcripts in Philadelphia-positive acute lymphoblastic leukemia, 283-287
genealogical typing, 337-345
screening, nonradioactive, 352-356
Multisubstrate enzyme, structure—function relationships, 212-218
Mutagenesis, background-minimized cassette, PCR, 212-218
Mutant analysis by PCR and restriction enzyme cleavage (MAPREC), 62-65
Mutations, detection, 188-190
MVR—PCR. See Minisatellite variant repeat PCR
Mycoplasma contamination of cell cultures, PCR-based detection of, 199–208
-like organisms (MLOs), plant pathogenic, DNA extraction method, 56–58
Myelodysplasia, preleukemic, detection of allele loss, 6–12
Myeloid disorders, detection of allele loss, 6–12
Neoplasm, hematopoietic, detection of allele loss, 6–12
Neurofibromatosis type 1 gene. See NF1 gene
NF1 gene, total coding sequence amplification, 311–313
Nonradioactive detection competitive PCR assay, 327–330
 direct sequencing, detection of p53 gene mutation in cancer tissues, 76–79
 multiplex PCR screening, 352–356
 single-strand conformation polymorphism protocol, for genetic screening, 52–55
OLA. See Oligonucleotide ligation assay
Oligonucleotide ligation assay (OLA), amplification for multiplex genetic typing, 337–345
Oligonucleotides, and fluorescent dyes in quenched probe system, 357–362
p53 gene, detection of mutation in cancer tissues using nonradioactive direct sequencing, 76–79
Paraffin wax-embedded samples archival heart tissue, mitochondrial DNA analysis, 309–310
 archiral material and a method for semiquantification of gene amplification, 178–184
 and PCR reagents, 191–194
Parameters affecting the sensitivities of dideoxy fingerprinting and SSCP
 PCR amplification of immunoglobulin genes from mouse hybridoma cells, 256–264
 amplification of gene fragments with very high G/C content, 124–125
 amplification of genomic DNA, 294–298
 amplification refractory mutation system, low-density lipoprotein receptor gene screening, 352–356
 amplified DNA fingerprint profiles, resolving by comparison of gel matrices, 50–51
 analysis of the H ferritin multigene family, 85–88
 artifacts formation, 109–116
 correcting for, and computation of genetic similarity coefficients, 38–43
 effects of, and computation of genetic similarity coefficients, 31–37
 background-minimized cassette mutagenesis, using cassette-specific selection markers, 212–218
 of bcr–abl in fusion transcripts in Ph + ALL, 283–287
 competitive evaluation of competitor type and size for use in the determination of mRNA, 219–226
 transcription-based system, 363–367
 decontamination systems, reliability, 117–123
 degenerate oligonucleotide-primed, to generate probes from yeast artificial chromosomes, 209–211
 detection of mycoplasmas, 199–208
 effect of internal direct and inverted Alu repeat sequences, 109–116
 electrochemiluminescence detection in competitive assay, 327–330
 group A streptococci typing, 288–293
 in direct gene quantitation, 145–153
 in situ and solution-phase analysis, of nonspecific DNA, 89–96
 inhibition and primer–dimer stimulation by reverse transcriptase, 62–65
 jumping reaction in, 109–116
 mapping the bending locus of DNA molecules, 44–45
 microsatellite-primed, genomic fingerprinting, 249–255
 minisatellite variant repeat, 71–75
 mRNA polyadenylation states, 317–321
 nested, with room-temperature-stable reagents, 376–379
 products analyzed by capillary hybridization, 303–304
 detected by quenched probe system, 357–362
 ligation-independent cloning of, length requirement of single-stranded tails, 172–177
 rapid isolation of cDNA clones, 126–128
 rapid quantitative, in tissue specimens, 305–308
 reactants on magnetic M-280–streptavidin beads, purification of single-stranded DNA, 227–233
 reagents, wax-embedded, 191–194
 reverse transcriptase generation of standard molecules for, 371–375
 and laser-induced fluorescence, analysis of gene expression, 154–159
 products detected by means of a novel, sensitive DNA stain, 234–238
 quantitation of mRNA species, 160–166
 screening of cDNA libraries, 46–49
 nonradioactive, 352–356
 semiquantitation of gene amplification from archival material, 178–184
 single-strand DNA conformational polymorphism (PCR-SSCP) analysis enhances polymorphism detection, 227–233
 single-tube nested, 376–379
 SSCP analysis, fluorescence based, 275–282
 used to alter hairpin ribozyme specificity, 139–144
 used to identify the species origin of highly processed meats, 241–243
 vectorette and subvectorette, used to isolate transgene flanking DNA, 71–75
 with deoxynosine-containing primers using DNA polymerases with proofreading activity, 239–240
 with end trimming and cassette ligation (ETCL–PCR), to clone exon–intron boundaries, 19–25
 PCR–SSCP. See PCR–single-strand DNA conformational polymorphism PhastSystem, separation of microsatellite alleles, 380–381
 Philadelphia-positive acute lymphoblastic leukemia, PCR of bcr–abl in fusion transcripts in, 283–287
 Plants, DNA extraction and PCR amplification of MLO DNA from, 56–58
 Poliovirus vaccine, oral, detection and quantitation of revertants, 62–65
 Polyadenylation analysis by PCR, 317–321
 Polymorphic microsatellite markers, 331–336
 Polymorphisms, detection enhanced by using metastable single-strand DNA conformational polymorphism, 227–233
 Polyphenolics, and DNA extraction, 56–58
 Primer–dimer formation, stimulation by reverse transcriptase, 62–65
 Primer extension, solid-phase, to quanti-
tate methylation of specific genome regions, 26–30
Primers, arbitrary, buffer components tailor DNA amplification with, 59–61
Product news, 133–134, 244–245
Proofreading activity, polymerases with and PCR with deoxynucleosine-contain ing primers, 239–240
Proteinase K and SDS, DNA extraction procedure, 368–370
Pseudogenes, revealed by PCR analysis of the H ferritin multigene family, 85–88
QPCR system S000. See Quantitative PCR system S000
Quantitation and detection of revertants of oral poliovirus vaccine, 62–65
gene, by PCR, 145–153
of methylation of specific genomic regions, 26–30
of mRNA species by RT–PCR on total mRNA population, 160–166
of RNA extracted from lymphocytes, by RT–PCR, 185–187
Quantitative analysis
gene expression in tissues by RT–PCR and laser-induced fluorescence, 154–159
PCR determination in tissue specimens, 305–308
RT–PCR products by means of a novel, sensitive DNA stain, 234–238
Quantitative PCR (QPCR) system S000, and competitive PCR, transcription-based system, 363–367
Quenched probe system, for detecting PCR product, 357–362
Random amplified polymorphic DNA (RAPD) markers
generic polymorphism screening, 346–351
generic similarity coefficients, 31–37, 38–43
RAPD. See Random amplified polymorphic DNA
Rat-1 cells, v-fos transformants, and revertants, and PCR direct gene quantitation, 145–153
Reagents
room-temperature stable, PCR, 376–379
wax-embedded, 191–194
Reliability, of PCR decontamination systems, 117–123
Reverse transcriptase—PCR
comparison of methods for RNA extraction from lymphocytes, 185–187
competitive, electrochemiluminescence detection in, 327–330
generation of standard molecules for, 371–375
primer—dimer formation, 62–65
products, novel and sensitive DNA stain, 234–238
quantitation of angiotensin-converting enzyme mRNA, 167–171
of mRNA species, 160–166
quantitative analysis of gene expression, 154–159
YACs, identification of terminal exons, 322–326
Revertants, oral poliovirus vaccine, detection and quantitation of, 62–65
Ribozymes, specificity alteration, using PCR, 139–144
RNA, extraction from lymphocytes for RT–PCR, comparison of methods, 185–187
Room-temperature-stable reagents, nested PCR, 376–379
RT–PCR. See Reverse transcriptase–PCR
Sanger dideoxy sequencing, 97–108
Screening
cDNA libraries, 46–49, 126–128
Gaucher disease, 1–5
generic disorders, 1–5, 6–12, 52–55
SDS and proteinase K, DNA extraction procedure, 368–370
Semiquantification, of gene amplification from archival material, 178–184
Similarity coefficients, genetic, computed from RAPD data, 31–37, 38–43
Single-base substitutions, in PCR-amplified DNA, 188–190
Single-stranded DNA (ssDNA)
conformational polymorphism analysis results in enhanced polymorphism detection, 227–233
conformation polymorphism and dideoxy fingerprinting, 97–108
conformation polymorphism protocol, nonisotopic protocol, 52–55
purified by magnetic M-280–streptavidin beads, 227–233
tails, length requirement, for ligation-independent cloning of PCR products, 172–177
Site-directed mutagenesis, PCR method for high fidelity, 269–274
Solution-phase PCR, analysis of nonspecific DNA synthesis, 89–96
Species, of highly processed meat products identified by mitochondrial DNA sequences, 241–243
SSCP. See Single-strand conformation polymorphism
sDNA. See Single-stranded DNA
Stain, DNA, SYBR Green I, 234–238
Streptococci, group A, typing, by PCR method, 288–293
Structure—function relationships of multisubstrate enzyme, 212–218
Subvectorette and vectorette PCR, to isolate transgene flanking DNA, 71–75
SYBR Green I DNA stain, 234–238
Template integrity, for PCR amplification of genomic DNA, 294–298
Template-calibrated RT–PCR, and laser-induced fluorescence, analysis of gene expression, 154–159
Tissue specimens, rapid quantitative PCR in, 305–308
Transcription-based competitive PCR system, 363–367
Transgene flanking DNA, isolated using vectorette and subvectorette PCR, 71–75
trans hairpin ribozyme, alteration of specificity using PCR, 139–144
Transfection assays, transient, 145–153
Tumors, assessment and semiquantification of gene amplification from archival material, 178–184
UITma DNA polymerase, with proofreading activity, PCR with deoxynucleosine-containing primers using, 239–240
Vaccine, oral poliovirus, detection and quantitation of revertants, 62–65
Vectorette and subvectorette PCR, to isolate transgene flanking DNA, use of, 71–75
Vir typing, group A streptococci, 288–293
Wax-embedded samples
archival heart tissue, mitochondrial DNA analysis, 309–310
archival material and a method for semiquantification of gene amplification, 178–184
PCR reagents, 191–194
YACs. See Yeast artificial chromosomes
Yeast artificial chromosomes (YACs) identification of terminal exons, 322–326
simple method to generate hapten-labeled DNA fragments from, 209–211
Yeast Genome Sequencing Programme of the European Community, 129–132

PCR Methods and Applications 389
<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adzuma, K.</td>
<td>275</td>
</tr>
<tr>
<td>Alfandari, D.</td>
<td>46</td>
</tr>
<tr>
<td>Allen, M.J.</td>
<td>71</td>
</tr>
<tr>
<td>Altschuler, M.</td>
<td>139</td>
</tr>
<tr>
<td>Altwegg, M.</td>
<td>368</td>
</tr>
<tr>
<td>Aslanidis, C.</td>
<td>172</td>
</tr>
<tr>
<td>Atkinson, R.G.</td>
<td>249</td>
</tr>
<tr>
<td>Bahramian, M.B.</td>
<td>145</td>
</tr>
<tr>
<td>Barranger, J.A.</td>
<td>1</td>
</tr>
<tr>
<td>Bartlett, J.M.S.</td>
<td>178</td>
</tr>
<tr>
<td>Bassam, B.J.</td>
<td>59</td>
</tr>
<tr>
<td>Battistini, L.</td>
<td>185</td>
</tr>
<tr>
<td>Bautista, D.</td>
<td>76</td>
</tr>
<tr>
<td>Benedetto, J.-P.</td>
<td>160</td>
</tr>
<tr>
<td>Benhattar, J.</td>
<td>76</td>
</tr>
<tr>
<td>Berdoz, J.</td>
<td>256</td>
</tr>
<tr>
<td>Bertoncini, J.</td>
<td>76</td>
</tr>
<tr>
<td>Bevilacqua, M.A.</td>
<td>85</td>
</tr>
<tr>
<td>Bhatnagar, R.K.</td>
<td>212</td>
</tr>
<tr>
<td>Blair, P.</td>
<td>191</td>
</tr>
<tr>
<td>Bobba, A.</td>
<td>309</td>
</tr>
<tr>
<td>Bonnet, J.</td>
<td>160</td>
</tr>
<tr>
<td>Borneman, J.</td>
<td>139</td>
</tr>
<tr>
<td>Brandt, P.</td>
<td>241</td>
</tr>
<tr>
<td>Brosnan, C.F.</td>
<td>185</td>
</tr>
<tr>
<td>Brosnahan, B.A.</td>
<td>191</td>
</tr>
<tr>
<td>Buzfús, Z.</td>
<td>380</td>
</tr>
<tr>
<td>Caetano-Anollés, G.</td>
<td>59</td>
</tr>
<tr>
<td>Callis, M.</td>
<td>352</td>
</tr>
<tr>
<td>Camaschella, C.</td>
<td>309</td>
</tr>
<tr>
<td>Candrian, U.</td>
<td>117</td>
</tr>
<tr>
<td>Cerney, M.B.</td>
<td>80</td>
</tr>
<tr>
<td>Chaubert, P.</td>
<td>76</td>
</tr>
<tr>
<td>Cheifetz, S.</td>
<td>363</td>
</tr>
<tr>
<td>Chen, Y.</td>
<td>294</td>
</tr>
<tr>
<td>Chen, L.</td>
<td>269</td>
</tr>
<tr>
<td>Cheng, J.</td>
<td>227</td>
</tr>
<tr>
<td>Cheng, S.</td>
<td>294</td>
</tr>
<tr>
<td>Choong, C.S.</td>
<td>219</td>
</tr>
<tr>
<td>Chumakov, K.M.</td>
<td>62</td>
</tr>
<tr>
<td>Cinco, F.</td>
<td>85</td>
</tr>
<tr>
<td>Claxton, D.</td>
<td>6</td>
</tr>
<tr>
<td>Collick, A.</td>
<td>71</td>
</tr>
<tr>
<td>Cooke, T.G.</td>
<td>178</td>
</tr>
<tr>
<td>Cooper, D.L.</td>
<td>1, 265</td>
</tr>
<tr>
<td>Costanzo, F.</td>
<td>85</td>
</tr>
<tr>
<td>Currie, B.</td>
<td>288</td>
</tr>
<tr>
<td>D’Agostino, P.</td>
<td>85</td>
</tr>
<tr>
<td>Danenberg, K.D.</td>
<td>305</td>
</tr>
<tr>
<td>Danenberg, P.V.</td>
<td>305</td>
</tr>
<tr>
<td>Darribère, T.</td>
<td>46</td>
</tr>
<tr>
<td>Darvasi, A.</td>
<td>13</td>
</tr>
<tr>
<td>de Jong, P.J.</td>
<td>172</td>
</tr>
<tr>
<td>Deetz, K.</td>
<td>357</td>
</tr>
<tr>
<td>DeGrandis, P.</td>
<td>139</td>
</tr>
<tr>
<td>DeGrandis, S.A.</td>
<td>363</td>
</tr>
<tr>
<td>Deisseroth, A.B.</td>
<td>6</td>
</tr>
<tr>
<td>DeSilva, U.</td>
<td>322</td>
</tr>
<tr>
<td>Devon, R.S.</td>
<td>209</td>
</tr>
<tr>
<td>Di Bacco, A.</td>
<td>126</td>
</tr>
<tr>
<td>Dosch, H.-M.</td>
<td>154</td>
</tr>
<tr>
<td>Dussurget, O.</td>
<td>199</td>
</tr>
<tr>
<td>Edmunds, S.</td>
<td>283</td>
</tr>
<tr>
<td>Eggerding, F.A.</td>
<td>337</td>
</tr>
<tr>
<td>Eggersdorfer, L.</td>
<td>52</td>
</tr>
<tr>
<td>Ehrlich, M.</td>
<td>109</td>
</tr>
<tr>
<td>Fairman, J.</td>
<td>6</td>
</tr>
<tr>
<td>Fanburg, B.L.</td>
<td>167</td>
</tr>
<tr>
<td>Fanelli, M.C.</td>
<td>85</td>
</tr>
<tr>
<td>Fattah, F.A.</td>
<td>212</td>
</tr>
<tr>
<td>Flood, S.J.A.</td>
<td>357</td>
</tr>
<tr>
<td>Forssmann, W.-G.</td>
<td>124</td>
</tr>
<tr>
<td>Frattini, A.</td>
<td>126</td>
</tr>
<tr>
<td>Fujiwara, H.</td>
<td>239</td>
</tr>
<tr>
<td>Fujiwara, K.</td>
<td>239</td>
</tr>
<tr>
<td>Fulco, A.J.</td>
<td>269</td>
</tr>
<tr>
<td>Gaedigk, R.</td>
<td>154</td>
</tr>
<tr>
<td>Galasinski, S.</td>
<td>139</td>
</tr>
<tr>
<td>Gallery, F.</td>
<td>89</td>
</tr>
<tr>
<td>Gardiner, R.C.</td>
<td>249</td>
</tr>
<tr>
<td>Gardner, D.</td>
<td>288</td>
</tr>
<tr>
<td>Garret, M.</td>
<td>160</td>
</tr>
<tr>
<td>Giannattasio, S.</td>
<td>309</td>
</tr>
<tr>
<td>Gibb, K.</td>
<td>56</td>
</tr>
<tr>
<td>Giusti, W.</td>
<td>357</td>
</tr>
<tr>
<td>Goldenberger, D.</td>
<td>368</td>
</tr>
<tr>
<td>Gosden, J.R.</td>
<td>209</td>
</tr>
<tr>
<td>Green, E.D.</td>
<td>322</td>
</tr>
<tr>
<td>Gresshoff, P.M.</td>
<td>59</td>
</tr>
<tr>
<td>Hamoui, S.</td>
<td>160</td>
</tr>
<tr>
<td>Hampel, A.</td>
<td>139</td>
</tr>
<tr>
<td>Harper, P.S.</td>
<td>311</td>
</tr>
<tr>
<td>Hartas, J.</td>
<td>286</td>
</tr>
<tr>
<td>Hashimoto, K.</td>
<td>239</td>
</tr>
<tr>
<td>He, G.</td>
<td>50</td>
</tr>
<tr>
<td>Heiskanen, S.</td>
<td>26</td>
</tr>
<tr>
<td>Holowachuk, E.W.</td>
<td>299</td>
</tr>
<tr>
<td>Hörmnschmeyer, D.</td>
<td>376</td>
</tr>
<tr>
<td>Hu, J.</td>
<td>346</td>
</tr>
<tr>
<td>Hurley, D.M.</td>
<td>219</td>
</tr>
<tr>
<td>Itakura, M.</td>
<td>19, 275</td>
</tr>
<tr>
<td>Iwahana, H.</td>
<td>19, 275</td>
</tr>
<tr>
<td>Jarret, R.L.</td>
<td>50</td>
</tr>
<tr>
<td>Jeffreys, A.J.</td>
<td>71</td>
</tr>
<tr>
<td>Ji, W.</td>
<td>109</td>
</tr>
<tr>
<td>Karges, W.J.P.</td>
<td>154</td>
</tr>
<tr>
<td>Kasuga, T.</td>
<td>227</td>
</tr>
<tr>
<td>Katashima, R.</td>
<td>19, 275</td>
</tr>
<tr>
<td>Keller, C.</td>
<td>52</td>
</tr>
<tr>
<td>Kemp, D.J.</td>
<td>288</td>
</tr>
<tr>
<td>Khatib, H.</td>
<td>13</td>
</tr>
<tr>
<td>Kirk, J.</td>
<td>283</td>
</tr>
<tr>
<td>Kleesiek, K.</td>
<td>376</td>
</tr>
<tr>
<td>Kleinz, R.</td>
<td>371</td>
</tr>
<tr>
<td>Knoblauch, H.</td>
<td>52</td>
</tr>
<tr>
<td>Kong, X.-J.</td>
<td>167</td>
</tr>
<tr>
<td>Kopp, D.W.</td>
<td>1</td>
</tr>
<tr>
<td>Kotze, M.J.</td>
<td>188, 352</td>
</tr>
<tr>
<td>Krachenbuhl, J.-P.</td>
<td>256</td>
</tr>
<tr>
<td>Kratochvil, J.-D.</td>
<td>80</td>
</tr>
<tr>
<td>Krizman, D.B.</td>
<td>322</td>
</tr>
<tr>
<td>Kury, F.</td>
<td>234</td>
</tr>
<tr>
<td>Laffler, T.G.</td>
<td>80</td>
</tr>
<tr>
<td>Laine, S.</td>
<td>26</td>
</tr>
<tr>
<td>Lamboy, W.F.</td>
<td>31, 38</td>
</tr>
<tr>
<td>Langenhoven, E.</td>
<td>352</td>
</tr>
<tr>
<td>Lanning, R.W.</td>
<td>265</td>
</tr>
<tr>
<td>Lanzillo, J.J.</td>
<td>167</td>
</tr>
<tr>
<td>LeDuc, C.</td>
<td>331</td>
</tr>
<tr>
<td>Lee, A.</td>
<td>283</td>
</tr>
<tr>
<td>Leichman, L.L.</td>
<td>305</td>
</tr>
<tr>
<td>Lenz, H.-J.</td>
<td>305</td>
</tr>
<tr>
<td>Liang, Q.</td>
<td>269</td>
</tr>
<tr>
<td>Lichter, J.</td>
<td>331</td>
</tr>
<tr>
<td>Liedtke, W.</td>
<td>185</td>
</tr>
<tr>
<td>Lippolis, R.</td>
<td>309</td>
</tr>
<tr>
<td>Liu, Q.</td>
<td>97</td>
</tr>
<tr>
<td>Livak, K.J.</td>
<td>357</td>
</tr>
<tr>
<td>Lüthy, J.</td>
<td>117</td>
</tr>
<tr>
<td>MacConnell, P.</td>
<td>89</td>
</tr>
<tr>
<td>Majumder, K.</td>
<td>212</td>
</tr>
<tr>
<td>Marmaro, J.</td>
<td>357</td>
</tr>
<tr>
<td>Marra, E.</td>
<td>309</td>
</tr>
<tr>
<td>Marshall, R.L.</td>
<td>80</td>
</tr>
<tr>
<td>Mathews, J.D.</td>
<td>288</td>
</tr>
<tr>
<td>Maule, J.C.</td>
<td>209</td>
</tr>
<tr>
<td>McCulloch, R.K.</td>
<td>219</td>
</tr>
<tr>
<td>Meltzer, P.S.</td>
<td>322</td>
</tr>
<tr>
<td>Miller, P.</td>
<td>331</td>
</tr>
<tr>
<td>Mitchelson, K.R.</td>
<td>227</td>
</tr>
<tr>
<td>Monath, T.P.</td>
<td>256</td>
</tr>
<tr>
<td>Monforte, J.-A.</td>
<td>294</td>
</tr>
<tr>
<td>Morgan, R.L.</td>
<td>80</td>
</tr>
<tr>
<td>Nagarajan, L.</td>
<td>6</td>
</tr>
<tr>
<td>Niederhauser, C.</td>
<td>117</td>
</tr>
<tr>
<td>Nuovo, G.J.</td>
<td>89</td>
</tr>
<tr>
<td>Oto, M.</td>
<td>303</td>
</tr>
<tr>
<td>Padovan, A.</td>
<td>56</td>
</tr>
<tr>
<td>Palotie, A.</td>
<td>26</td>
</tr>
<tr>
<td>Parry, P.</td>
<td>331</td>
</tr>
<tr>
<td>Peeters, A.V.</td>
<td>188, 352</td>
</tr>
<tr>
<td>Perschil, I.</td>
<td>368</td>
</tr>
<tr>
<td>Plotiski, Y.</td>
<td>13</td>
</tr>
<tr>
<td>Porcellini, A.</td>
<td>85</td>
</tr>
<tr>
<td>Porteous, D.J.</td>
<td>209</td>
</tr>
<tr>
<td>Prakash, C.S.</td>
<td>50</td>
</tr>
<tr>
<td>Priest, D.G.</td>
<td>305</td>
</tr>
<tr>
<td>Qiu, J.</td>
<td>50</td>
</tr>
<tr>
<td>Qu, G.A.</td>
<td>109</td>
</tr>
<tr>
<td>Quresmis, B.</td>
<td>85</td>
</tr>
<tr>
<td>Quiroz, C.F.</td>
<td>346</td>
</tr>
<tr>
<td>Radich, J.</td>
<td>283</td>
</tr>
<tr>
<td>Raine, C.S.</td>
<td>185</td>
</tr>
</tbody>
</table>
Ramanujam, R., 191
Rawadi, G., 199
Reske-Kunz, A.G., 371
Ritzler, M., 368
Ross, R., 371
Ruhoff, M.S., 299
Sakallah, S.A., 1
Sakallah, S.A., 265
Salles, F., 317
Sansieri, C., 1
Schmitz, G., 172
Schneeberger, C., 234
Schuster, H., 52
Selvapandiyani, A., 212
Shen, M.H., 311
Shibasaki, Y., 209
Siitari, H., 26
Siwkowski, A., 139
Slorach, E.M., 209
Soller, M., 13
Sommer, S.S., 97
Speiser, P., 234
Sriprakash, K.S., 288
Strickland, S., 317
Strina, D., 126
Suehiro, T., 303
Susani, L., 126
Sustachek, J.C., 80
Syvänen, A-C., 26
Szczepanik, A.M., 327
Takahashi, Y., 275
Theart, L., 352
Thiart, R., 352
Tiano, M.T., 85
Trent, J.M., 322
Tsujisawa, T., 19
Tuzun, S., 50
Underwood, M.A., 178
Unseld, M., 241
Upadhyaya, M., 311
Valle, F., 44
van Eysden, J., 346
Van Houten, B., 294
Varga, L., 380
Verhasselt, P., 129
Vezzoni, P., 126
Villa, A., 126
Volckaert, G., 129
Warshamana, G.S., 109
Wegmüller, B., 117
Weising, K., 249
Weiss, J., 124
Weiss, N., 52
Wilkinson, E.T., 363
Willman, C.L., 6
Wolff, C., 376
Wolff, D., 376
Yoshimoto, K., 19
Yoshimoto, K., 275
Yuasa, Y., 303
Zarbl, H., 145

Zeillinger, R., 234
Zhang, X-Y., 109
Zucchi, I., 126
Zucht, H.-D., 124
The contents page of each 1995 issue of *Genes & Development* is made available on-line as soon as the issue is published.

Now you can preview the latest issue before you get it! And you can do keyword searches on the titles of all the year's issues months before the index or the abstracts are published elsewhere.

You can do all this at your computer! All you need is access to the World Wide Web.

Here's a sample of what you would see when you call up the Table of Contents of a recent issue of *Genes & Development*.

The contents pages of *Genes & Development* are available at your fingertips. Just log into World Wide Web site -- http://www.cshl.org/journals/
Until now, when you wanted the finest resolution of PCR* products and small DNA fragments (less than 800 bp), you probably made a polyacrylamide gel. Preparing that gel, however, was tedious and time-consuming.

But now there's something better. It's a new kind of agarose that not only offers speed and convenience, but also has twice the resolution capabilities of any other agarose. It's new MetaPhor™ agarose from FMC.

In fact, as you can see from the above results, MetaPhor agarose gives you resolution so fine (down to a 4 bp difference) that it rivals polyacrylamide. And we think that makes it a clear winner.

Just dissolve MetaPhor agarose in 1X TBE buffer, cast and chill the gel in your submarine chamber, load your samples, and go. It's as easy as that.

So take the MetaPhor challenge, and see how our new MetaPhor agarose performs. When you do, you'll understand why scientists who want the best go straight to the source. To learn more, or to place your order, call us today at 800-341-1574.