FULL SERVICE DNA

Amitof Biotech Inc. is a full service custom DNA facility designed to meet all of your research needs.

- Large Scale Synthesis
- Phosphorothioates
- Fluorescent Labelling
 - FITC, Biotin, and more
- Alkaline Phosphatase
- Minor Bases
 - Inosine, Uridine, etc.
- Purification
 - HPLC & Reverse Phase

0.2uM Scale synthesis is standard and all oligos are shipped within 48 hours. We also offer a rush service at no extra charge (please inquire for details.)

For more information call 1-800-998-4863 or FAX your order to 617-782-9352

AMITOF Biotech Inc.
14-20 Linden Street, Boston, MA 02134

Your dependable source for DNA

Looking for a "hands on" training workshop?

Biotechnology Training Programs has provided "hands on" training workshops in molecular biology laboratory techniques throughout the United States for more than five years.

Our 1995 course offerings include:
- Introduction to PCR
- Quantitative RNA-PCR
- Introduction to In Situ PCR
- Basic Cloning & Hybridization Techniques
- DNA Sequencing w/o Radioactivity
- Intro to Molecular Mycobacteriology
- Clinical Applications of PCR
- Custom designed workshops

To receive our 1995 schedule or to plan a workshop at your facility, please call

Biotechnology Training Programs
1-800-821-4861
Fax 603-267-1993

Subscriptions: Barbara Terry, Subscription Manager. Personal: U.S. $89; R.O.W. $105 surface mail, $32 additional airlift delivery. Institutional: U.S. $276; R.O.W. $292. Orders may be sent to Cold Spring Harbor Laboratory Press, Fulfillment Department, 10 Skyline Drive, Plainview, New York 11803-9729. Telephone: Continental U.S. and Canada 1-800-843-4388; all other locations 516-349-1930. FAX 516-349-1946. Personal subscriptions must be prepaid by personal check, credit card, or money order. Claims for missing issues must be received within 4 months of issue date.

Copyright Information: Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by Cold Spring Harbor Laboratory Press for libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of $5.00 per copy is paid directly to CCC, 21 Congress Street, Salem, Massachusetts 01970 (1054-9803/95 + $5.00). This consent does not extend to other kinds of copying, such as copying for general distribution for advertising or promotional purposes, for creating new collective works, or for resale.

The methods, products, instructions of ideas contained in or suggested by this journal should be used only by experienced scientific researchers and only in accordance with prudent laboratory safety precautions. Their use by inexperienced or improperly trained individuals could result in serious injury. The publisher does not endorse the claims made by the advertisers in this journal.

Copyright © 1995 by Cold Spring Harbor Laboratory Press
This Electron Micrograph Demonstrates that DNA Isolated from Agarose Gels Using GELase is Pure and Impact...

Dr. Philip Serwer, Professor of Biochemistry at the University of Texas-San Antonio, wanted to find a way to isolate intact high molecular weight DNA from pulsed field agarose gels for electron microscopic (EM) observation. This had never been done before because contaminating fibers of agarose from the gel look like DNA strands using negative staining EM. Thus, the agarose had to be completely removed, yet the method had to be gentle enough—with no DNase contamination or shearing—so the DNA remained intact. Dr. Serwer's lab found that GELase digests LMP-agarose to >99% completion, permitting recovery of intact high molecular weight DNA that can be seen using negative-staining EM (see photo). Dr. Serwer's laboratory also used GELase to purify a protein-DNA complex from pulsed field gels for EM and other studies (Biochemistry, Vol. 31, pp. 8397-8405, 1992).

9. "Here are 7 reasons that GELase is superior to any other method for purifying DNA or RNA from LMP-agarose gels.

- GELase is easy to use. Just melt the gel slice with GELase Buffer, add GELase and incubate at 45°C to digest the agarose. To concentrate the DNA, add NH4OAc and ethanol. The gel digestion products are soluble and won't precipitate with the DNA.
- Recovery of DNA is about 100% using GELase. Since GELase digests the gel matrix without any manipulation of the DNA, there is no opportunity for losses to occur. If the DNA is concentrated, recovery is limited only by the efficiency of ethanol precipitation of the DNA, which is usually highly efficient.
- Any size DNA can be isolated intact using GELase. GELase will not damage your DNA, whether you work with small PCR products or high molecular weight DNA—even megabase DNA from pulsed field gels.
- GELase is inexpensive. One unit of GELase digests 600 mg of a 1% LMP-agarose gel in 1 hour in GELase Buffer. That's about 3-4 average sized gel bands. With an overnight incubation instead of 1 hour, the 200-unit size of GELase is enough to digest more than a KILOGRAM of a 1% gel.
- DNA purified using GELase is ready to use and biologically active. DNA recovered using GELase is ready for use in restriction mapping, cloning, labeling, sequencing, transcription or other molecular biological experiments.
- Gels electrophoresed in all common buffers can be digested using GELase. The same simple procedures can be used for gels in TAE, TBE, MOPS or phosphate buffers.
- GELase protocols are the same for RNA as for DNA. Glyoxal or formaldehyde gels can be digested. And GELase is certified to be RNase-free.

What is GELase?

GELase is a novel enzyme preparation that digests the carbohydrate backbone of agarose into small soluble oligo-saccharides, yielding a clear liquid that will not become viscous or gel even on cooling in an ice bath. It permits simple and quantitative recovery of intact DNA or RNA from low melting point (LMP) agarose gels. GELase contains no contaminating DNase, RNase or phosphatase.

*GELase is a trademark of EPICENTRE TECHNOLOGIES, Madison, Wl.

Reader Service No. 219

For High-Fidelity PCR

Pfu Beats Taq 12 to 1

If you need the lowest possible error rate or blunt-ended PCR fragments, you need Pfu DNA polymerase! Unlike Taq DNA polymerase, Pfu proof-reads and corrects errors. The proof is in the PCR. If a 1-kb sequence is amplified for 20 effective cycles, there will be misincorporation mutations in 40% of the products generated with Taq, but of those amplified with Pfu only 3.2% will have mutations.

The advantages add up to better PCR!

• >12 times higher fidelity

• Blunt-ended fragments

Pfu DNA polymerase. There is only one original.

Native Pfu DNA Polymerase Catalog #600135 (100U), #600136 (500U)
Recombinant Pfu DNA Polymerase Catalog #600153 (100U), #600154 (500U), #600159 (1000U)

Reader Service No. 462
This Electron Micrograph Demonstrates that DNA Isolated from Agarose Gels Using GELase is Pure and Impact...

Dr. Philip Serwer, Professor of Biochemistry at the University of Texas-San Antonio, wanted to find a way to isolate intact high molecular weight DNA from pulsed field agarose gels for electron microscopic (EM) observation. This had never been done before because contaminating fibers of agarose from the gel look like DNA strands using negative staining EM. Thus, the agarose had to be completely removed, yet the method had to be gentle enough--with no DNase contamination or shearing--so the DNA remained intact. Dr. Serwer's lab found that GELase digests LMP-agarose to >99% completion, permitting recovery of intact high molecular weight DNA that can be seen using negative-staining EM (see photo). Dr. Serwer's laboratory also used GELase to purified a protein-DNA complex from pulsed field gels for EM and other studies (Biochemistry, Vol. 31, pp. 8397-8405, 1992).

Here are 7 reasons that GELase is superior to any other method for purifying DNA or RNA from LMP-agarose gels.

1. GELase is easy to use. Just melt the gel slice with GELase Buffer, add GELase and incubate at 45°C to digest the agarose. To concentrate the DNA, add NH40Ac and ethanol. The gel digestion products are soluble and won't precipitate with the DNA.

2. Recovery of DNA is about 100% using GELase. Since GELase digests the gel matrix without any manipulation of the DNA, there is no opportunity for losses to occur. If the DNA is concentrated, recovery is limited only by the efficiency of ethanol precipitation of the DNA, which is usually highly efficient.

3. Any size DNA can be isolated intact using GELase. GELase will not damage your DNA, whether you work with small PCR products or high molecular weight DNA---even megabase DNA from pulsed field gels.

4. GELase is inexpensive. One unit of GELase digests 600 mg of a 1% LMP-agarose gel in 1 hour in GELase Buffer. That's about 3-4 average sized gel bands. With an overnight incubation instead of 1 hour, the 200-unit size of GELase is enough to digest more than a KILOGRAM of a 1% gel.

5. DNA purified using GELase is ready to use and biologically active. DNA recovered using GELase is ready for use in restriction mapping, cloning, labeling, sequencing, transcription or other molecular biological experiments.

6. Gels electrophoresed in all common buffers can be digested using GELase, the same simple procedures can be used for gels in TAE, TBE, MOPS or phosphate buffers.

7. GELase protocols are the same for RNA as for DNA. Glyoxal or formaldehyde gels can be digested. And GELase is certified to be RNase-free.

What is GELase? GELase is a novel enzyme preparation that digests the carbohydrate backbone of agarose into small soluble oligo-saccharides, yielding a clear liquid that will not become viscous or gel even on cooling in an ice bath. It permits simple and quantitative recovery of intact DNA or RNA from low melting point (LMP) agarose gels. GELase contains no contaminating DNase, RNase or phosphatase.

GELase is a trademark of EPICENTRE TECHNOLOGIES, Madison, WI.

EPICENTRE TECHNOLOGIES
1202 Ann Street
Madison, WI 53713
800/284-8474

For other countries, please contact EPICENTRE TECHNOLOGIES at Tel. 608/277-8474 or Fax 608/277-1268.
This Electron Micrograph Demonstrates that DNA Isolated from Agarose Gels Using GELase is Pure and intact...

Dr. Philip Serwer, Professor of Biochemistry at the University of Texas-San Antonio, wanted to find a way to isolate intact high molecular weight DNA from pulsed field agarose gels for electron microscopic (EM) observation. This had never been done before because contaminating fibers of agarose from the gel look like DNA strands using negative staining EM. Thus, the agarose had to be completely removed, yet the method had to be gentle enough--with no DNase contamination or shearing--so the DNA remained intact. Dr. Serwer's lab found that GELase digests LMP-agarose to >99% completion, permitting recovery of intact high molecular weight DNA that can be seen using negative-staining EM (see photo). Dr. Serwer's laboratory also used GELase to purify a protein-DNA complex from pulsed field gels for EM and other studies (Biochemistry, Vol. 31, pp. 8397-8405, 1992).

9. "Here are 7 reasons that GELase is superior to any other method for purifying DNA or RNA from LMP-agarose gels.

- GELase is easy to use. Just melt the gel slice with GELase Buffer, add GELase and incubate at 45°C to digest the agarose. To concentrate the DNA, add NH4OAc and ethanol. The gel digestion products are soluble and won't precipitate with the DNA.
- Recovery of DNA is about 100% using GELase. Since GELase digests the gel matrix without any manipulation of the DNA, there is no opportunity for losses to occur. If the DNA is concentrated, recovery is limited only by the efficiency of ethanol precipitation of the DNA, which is usually highly efficient.
- Any size DNA can be isolated intact using GELase. GELase will not damage your DNA, whether you work with small PCR products or high molecular weight DNA---even megabase DNA from pulsed field gels.
- GELase is inexpensive. One unit of GELase digests 600 mg of a 1% LMP-agarose gel in 1 hour in GELase Buffer. That's about 3-4 average sized gel bands. With an overnight incubation instead of 1 hour, the 200-unit size of GELase is enough to digest more than a KILOGRAM of a 1% gel.
- DNA purified using GELase is ready to use and biologically active. DNA recovered using GELase is ready for use in restriction mapping, cloning, labeling, sequencing, transcription or other molecular biological experiments.
- Gels electrophoresed in all common buffers can be digested using GELase, the same simple procedures can be used for gels in TAE, TBE, MOPS or phosphate buffers.
- GELase protocols are the same for RNA as for DNA. Glyoxal or formaldehyde gels can be digested. And GELase is certified to be RNase-free.

What is GELase? GELase is a novel enzyme preparation that digests the carbohydrate backbone of agarose into small soluble oligo-saccharides, yielding a clear liquid that will not become viscous or gel even on cooling in an ice bath. It permits simple and quantitative recovery of intact DNA or RNA from low melting point (LMP) agarose gels. GELase contains no contaminating DNase, RNase or phosphatase.

*GELase is a trademark of EPICENTRE TECHNOLOGIES, Madison, WI.

EPICENTRE TECHNOLOGIES
1202 Ann Street
Madison, WI 53713
800/284-8474

For fastest service, call:
1-800-843-4388
Continental U.S. and Canada
516-349-1930
All other locations
FAX: 516-349-1946
This Electron Micrograph Demonstrates that DNA Isolated from Agarose Gels Using GELase is Pure and Impact...

Dr. Philip Serwer, Professor of Biochemistry at the University of Texas-San Antonio, wanted to find a way to isolate intact high molecular weight DNA from pulsed field agarose gels for electron microscopic (EM) observation. This had never been done before because contaminating fibers of agarose from the gel look like DNA strands using negative staining EM. Thus, the agarose had to be completely removed, yet the method had to be gentle enough—with no DNase contamination or shearing—so the DNA remained intact. Dr. Serwer's lab found that GELase digests LMP-agarose to >99% completion, permitting recovery of intact high molecular weight DNA that can be seen using negative-staining EM (see photo). Dr. Serwer's laboratory also used GELase to purify a protein-DNA complex from pulsed field gels for EM and other studies (Biochemistry, Vol. 31, pp. 8397-8405, 1992).

Here are 7 reasons that GELase is superior to any other method for purifying DNA or RNA from LMP-agarose gels.

1. GELase is easy to use. Just melt the gel slice with GELase Buffer, add GELase and incubate at 45°C to digest the agarose. To concentrate the DNA, add NH4OAc and ethanol. The gel digestion products are soluble and won't precipitate with the DNA.

2. Recovery of DNA is about 100% using GELase. Since GELase digests the gel matrix without any manipulation of the DNA, there is no opportunity for losses to occur. If the DNA is concentrated, recovery is limited only by the efficiency of ethanol precipitation of the DNA, which is usually highly efficient.

3. Any size DNA can be isolated intact using GELase. GELase will not damage your DNA, whether you work with small PCR products or high molecular weight DNA—even megabase DNA from pulsed field gels.

4. GELase is inexpensive. One unit of GELase digests 600 mg of a 1% LMP-agarose gel in 1 hour in GELase Buffer. That's about 3-4 average sized gel bands. With an overnight incubation instead of 1 hour, the 200-unit size of GELase is enough to digest more than a KILOGRAM of a 1% gel.

5. DNA purified using GELase is ready to use and biologically active. DNA recovered using GELase is ready for use in restriction mapping, cloning, labeling, sequencing, transcription or other molecular biological experiments.

6. Gels electrophoresed in all common buffers can be digested using GELase. The same simple procedures can be used for gels in TAE, TBE, MOPS or phosphate buffers.

7. GELase protocols are the same for RNA as for DNA. Glyoxal or formaldehyde gels can be digested. And GELase is certified to be RNase-free.

What is GELase? GELase is a novel enzyme preparation that digests the carbohydrate backbone of agarose into small soluble oligosaccharides, yielding a clear liquid that will not become viscous or gel even on cooling in an ice bath. It permits simple and quantitative recovery of intact DNA or RNA from low melting point (LMP) agarose gels. GELase contains no contaminating DNase, RNase or phosphatase.

GELase is a trademark of EPICENTRE TECHNOLOGIES, Madison, WI.

For further information, please contact EPICENTRE TECHNOLOGIES:

- Tel. 608/277-8474
- Fax 608/277-1268

For other countries, please contact EPICENTRE TECHNOLOGIES at Tel. 608/277-8474 or Fax 608/277-1268.
This Electron Micrograph Demonstrates that DNA Isolated from Agarose Gels Using GELase’s Pure and IMact...

Dr. Philip Serwer, Professor of Biochemistry at the University of Texas-San Antonio, wanted to find a way to isolate intact high molecular weight DNA from pulsed field agarose gels for electron microscopic (EM) observation. This had never been done before because contaminating fibers of agarose from the gel look like DNA strands using negative staining EM. Thus, the agarose had to be completely removed, yet the method had to be gentle enough—with no DNase contamination or shearing—so the DNA remained intact. Dr. Serwer’s lab found that GELase digests LMP-agarose to >99% completion, permitting recovery of intact high molecular weight DNA that can be seen using negative-staining EM (see photo). Dr. Serwer’s laboratory also used GELase to purify a protein-DNA complex from pulsed field gels for EM and other studies (Biochemistry, Vol. 31, pp. 8397-8405, 1992).

GELase is easy to use. Just melt the gel slice with GELase Buffer, add GELase and incubate at 45°C to digest the agarose. To concentrate the DNA, add NH₄OAc and ethanol. The gel digestion products are soluble and won’t precipitate with the DNA. Recovery of DNA is about 100% using GELase. Since GELase digests the gel matrix without any manipulation of the DNA, there is no opportunity for losses to occur. If the DNA is concentrated, recovery is limited only by the efficiency of ethanol precipitation of the DNA, which is usually highly efficient. Any size DNA can be isolated intact using GELase. GELase will not damage your DNA, whether you work with small PCR products or high molecular weight DNA—'even megabase DNA from pulsed field gels. GELase is inexpensive. One unit of GELase digests 600 mg of a 1% LMP-agarose gel in 1 hour in GELase Buffer. That’s about 3-4 average sized gel bands. With an overnight incubation instead of 1 hour, the 200-unit size of GELase is enough to digest more than a KILOGRAM of a 1% gel.

DNA purified using GELase is ready to use and biologically active. DNA recovered using GELase is ready for use in restriction mapping, cloning, labeling, sequencing, transcription or other molecular biological experiments. Gels electrophoresed in all common buffers can be digested using GELase, The same simple procedures can be used for gels in TAE, TBE, MOPS or phosphate buffers. GELase protocols are the same for RNA as for DNA. Glyoxal or formaldehyde gels can be digested. And GELase is certified to be RNase-free.

What is GELase? GELase is a novel enzyme preparation that digests the carbohydrate backbone of agarose into small soluble oligo-saccharides, yielding a clear liquid that will not become viscous or gel even on cooling in an ice bath. It permits simple and quantitative recovery of intact DNA or RNA from low melting point (LMP) agarose gels. GELase contains no contaminating DNase, RNase or phosphatase.

*GELase is a trademark of EPICENTRE TECHNOLOGIES, Madison, WI.

COLD SPRING HARBOR LABORATORY PRESS
New GeneAmp XL PCR Kit makes generating long PCR products routine

Perkin-Elmer has introduced the GeneAmp XL PCR Kit, an optimized system for the generation of long (from 5 kb up to 40 kb) polymerase chain reaction (PCR) products. Perkin-Elmer's new enzyme, recombinant Thermus thermophilus (rTth) DNA polymerase, XL, along with a novel reaction buffer, creates optimal conditions for generating extra long (XL) PCR products with high reproducibility and specificity. The GeneAmp XL Kit allows the crossing of gaps in contig maps, long-range direct PCR product sequencing, crossing of intervening sequences (introns) in expressed genes and PCR-based characterization and diagnosis of medically important large gene insertions or deletions. Optimized for use with Perkin-Elmer's GeneAmp PCR Instrument Systems and AmpliWax PCR Gem 100, the GeneAmp XL PCR Kit provides reliable, robust and specific XL PCR products from a broad range of DNA templates—even complex genomic material. Specially formulated rTth DNA polymerase, XL provides efficient extension while correcting misincorporated nucleotides (3' to 5' exonuclease activity) that might otherwise terminate chain synthesis during subsequent annealing and extension steps. **Contact:** The Perkin-Elmer Corporation, 761 Main Avenue, Norwalk, Connecticut 06859-0310; (203) 762-1000. Reader Service No. 452.

PCR Master

The new PCR Master from Boehringer Mannheim makes polymerase chain reactions as simple as adding primers and template to a premixed solution containing Taq DNA polymerase, optimized reaction buffer, and nucleotides. The use of PCR Master eliminates several individual pipetting steps and thereby simplifies the simultaneous preparation of multiple samples. PCR Master also provides security against contamination with extraneous DNA because the premixed solution is aliquotted into 10 separate vials. Each vial is sufficient for 10 PCR reactions. In addition, PCR Master can be stored at +4°C without loss of activity, which means no waiting for the reagents to thaw. **Contact:** Boehringer Mannheim Corporation, 9115 Hague Road, P.O. Box 50414, Indianapolis, Indiana 46250-0414; (800) 262-1640. Reader Service No. 453.

EasyPrep from Pharmacia

Pharmacia introduces EasyPrep, a new and easy way to prepare nucleic acids. EasyPrep offers a simple, reliable, and standardized preparation method to all researchers who need highly pure nucleic acids from bacteria, in vitro DNA synthesis, PCR reactions, etc. Recoveries are high, and centrifugation and many hazardous chemicals are avoided. EasyPrep is extremely simple to operate. Positive air pressure from a pump pushes liquid through up to 24 filter and column wells held in sample plates in a sealed processing unit. By simple variations of time and pressure and different combinations of filters, wells, and solutions, up to 24 preparations can be completed in as little as 30 min. Products are free from contamination and ready for direct use in manual or automated sequencing, PCR priming, labeling, etc. EasyPrep consists of a pump unit and a process box. Four specialized EasyPrep kits containing disposable filters, column wells, and ready-made solutions are available separately. The four kits are Plasmid, M13, PCR, and Oligo Prep Kits. Each contains material for 24 purifications.

Contact: Pharmacia Biotech, 800 Centennial Avenue, P.O. Box 1327, Piscataway, New Jersey 08855-1327. Reader Service No. 454.

ScreenTest recombinant screening in one day by use of PCR

Stratagene introduces the ScreenTest recombinant screening kit, which allows 3-hr, PCR-based recombinant insert
analysis directly from transformed colonies. No time-consuming overnight inoculations, DNA minipreps, or restriction enzyme digestions are required. The kit’s unique primers contain highly conserved complementary sequences and were designed to be asymmetric to the multiple cloning sites in plasmids, making it possible to determine insert presence and orientation by agarose gel analysis of the PCR-generated products. When the ScreenTest primer set is combined with a user-defined insert-specific primer, characteristic banding patterns will verify insert orientation. The ScreenTest kit can be used to screen for recombinant clones from most ColE1 plasmids or excised Lambda ZAP insertion vectors. The ScreenTest recombinant screening kit contains all the reagents needed for this PCR-mediated analysis: 10× reaction buffer, primers, dNTPs, Stratagene’s Taq Extender PCR additive (a PCR adjunct that increases the yield and reliability of PCR), pBluescriptII control DNA, and a control primer for directionality. The kit includes sufficient reagents to perform 100 reactions.

Contact: Stratagene, 11011 North Torrey Pines Road, La Jolla, California 92037. Reader Service No. 455.

DNA Preparation Kit for PCR

In less than 30 min and only 10 steps, Split Second DNA Preparation Kit produces PCR-ready DNA from human whole blood. Because all preparation takes place in a single microfuge tube, Split Second maximizes safety by minimizing exposure to infectious agents. The kit eliminates hazardous phenol/chloroform extractions, and lymphocyte separation gradients, as well as tedious ethanol precipitations. Each kit provides all the reagents necessary for preparing 50–250 blood samples for PCR. Split Second is ideal for simultaneously processing large numbers of human whole blood samples for PCR.

Contact: Boehringer Mannheim Corporation, 9115 Hague Road, P.O. Box 50414, Indianapolis, Indiana 46250-0414; (800) 262-1640. Reader Service No. 456.

Amplification of longer genomic DNA templates with TaKaRa’s LA PCR Kit

Efficient PCR amplification of DNA fragments greater than 5 kb has often been problematic. The TaKaRa LA PCR Kit is designed to overcome this limitation. The LA PCR Kit includes all the reagents necessary for amplification of large DNA templates. By combining an optimized buffer system with TaKaRa’s EX Taq DNA polymerase, the kit provides for routine extension to 20 kb, with up to 40 kb possible. Amplification of large products is demonstrated by the inclusion of a 21-kb control template and specific primers. In addition, the system achieves high fidelity by use of an efficient 3’ to 5’ exonuclease activity. The LA PCR Kit also includes dNTP mix and MW markers to assure premium performance.

Contact: PanVera Corporation, 565 Science Drive, Madison, Wisconsin 53711; (800) 791-1400; (608) 233-5050; Fax (608) 233-3007. Reader Service No. 457.

RapidPrep Genomic DNA Isolation Kits for cells and tissues

Pharmacia Biotech introduces two new kits for the isolation of genomic DNA from cells and tissues in 60–90 min. The kits are fast because they include prepacked spin columns and reagents for handling many different types of cells and tissues. The purified DNA is of sufficient yield and purity for use in PCR, Southern blots, RFLP analysis, mapping, and other nucleic acid manipulations. The Micro Kit contains sufficient reagents for 50 purifications from 10–20 mg of animal tissue, 50 mg of plant tissue, 2×10^9 bacterial cells or 2×10^8 cultured cells. The Macro Kit contains sufficient reagents for 10 purifications from 50–100 mg of animal tissue, 250 mg of plant tissue, 1×10^10 bacterial cells or 1×10^7 cultured cells.

Contact: Pharmacia Biotech, 800 Centennial Avenue, P.O. Box 1327, Piscataway, New Jersey 08855-1327; (800) 526-3593. Reader Service No. 458.
Hailed as "the bible" in a Nature review, *PCR Methods and Applications* has been accepted enthusiastically as a top quality, independent, peer-reviewed source of timely research information on PCR and other amplification techniques.

The journal offers a mix of commissioned review articles and submitted primary research papers and technical tips describing advances in PCR and other amplification techniques such as:

- random PCR
- genome analysis
- subtracted cDNA library construction
- detection of specific viruses and bacteria
- ligation-mediated analysis
- site-directed mutagenesis
- quantitative PCR
- automated techniques
- sequencing techniques
- preferential PCR
- amplification of alleles
- ligation chain reaction
- PCR-SSCP

In addition, a feature within most issues of Volume 4 is a PCR manual supplement section, which includes both basic and specialized PCR protocols and extensive trouble-shooting advice and referencing.

Researchers developing PCR-based sequencing techniques as well as those developing clinically oriented amplification applications are especially encouraged to submit work to the journal.

Subscription Information:

Volume 4, 1994/1995
containing 6 bimonthly issues (beginning August 1994)

- Individual Price (U.S.) $89.00
- Individual Price (R.O.W.* surface delivery) $105.00
- Individual Price (R.O.W.* airlift delivery) $137.00
- Student Price (U.S.) $65.00**
- Student Price (R.O.W.* surface delivery) $85.00**
- Institutional Price (U.S.) $276.00
- Institutional Price (R.O.W.* surface delivery) $292.00
- Institutional Price (R.O.W.* airlift delivery) $324.00

* R.O.W. = Rest of World
** Those who qualify must provide student I.D.