Spin your way to clean DNA with QIAquick

Take QIAquick Kits for a spin and see how easy it is to clean up DNA fragments. QIAquick microspin membrane technology means:

- 99% contaminant removal
- up to 90% recovery of DNA
- fast 5 – 15 minute procedures
- optimized buffers for each application

Say good-bye to time-consuming phenol extraction, gel filtration, ethanol precipitation and electroleution — with QIAquick microspin technology you simply load the sample, wash, and elute. The whole procedure takes 5 to 15 minutes from start to finish. Purified DNA is recovered with up to 90% efficiency, ready for use in all standard applications, such as restriction, ligation, transformation, hybridization, PCR, and sequencing.

QIAquick is available in 3 specialized kits. Each kit has different buffers, designed to provide optimum purification in each specific application:

QIAquick Gel Extraction Kits extract DNA fragments between 100 bp and 10 kb from TAE and TBE agarose gels.

QIAquick PCR Purification Kits separate primers (up to 40 bases), nucleotides, mineral oil, and other reagents from ds and ss PCR products as small as 100 bp.

QIAquick Nucleotide Removal Kits clean up DNA fragments and oligos as small as 20 bases after labeling, sequencing and other enzymatic reactions.

To find out more about the range of QIAquick Kits, contact QIAGEN or your local distributor — and spin your way to clean DNA.
October, 1994
Volume 4, Number 2

RESEARCH

71 Use of Vectorette and Subvectorette PCR to Isolate Transgene Flanking DNA
Maxine J. Allen, Andrew Collick, and Alec J. Jeffreys

76 Detection of p53 Gene Mutation in Cancer Tissues by Nonradioactive Direct Sequencing
Dolores Bautista, Pascal Chaubert, Joëlle Bertoncini, and Jean Benharrat

80 Detection of HCV RNA by the Asymmetric Gap Ligase Chain Reaction

85 PCR Analysis of the H Ferritin Multigene Family Reveals the Existence of Two Classes of Processed Pseudogenes
B. Quaresima, M.T. Tiano, A. Porcellini, P. D’Agostino, M.C. Faniello, M.A. Bevilacqua, F. Cimino, and F. Costanzo

89 Analysis of Nonspecific DNA Synthesis during In Situ PCR and Solution-phase PCR
Gerard J. Nuovo, Phyllis MacConnell, and Frances Gallery

97 Parameters Affecting the Sensitivities of Dideoxy Fingerprinting and SSCP
Qiang Liu and Steve S. Sommer

109 Effect of Internal Direct and Inverted Alu Repeat Sequences on PCR
Weizhen Ji, Xian-Yang Zhang, G. Sakuntala Warshamana, Guang-zhi Alan Qu, and Melanie Ehrlich

117 Reliability of PCR Decontamination Systems
C. Niederhauser, C. Höfelein, B. Wegmüller, J. Lüthy, and U. Candrian

TECHNICAL TIPS

124 Amplification of Gene Fragments with Very High G/C Content: c’dGTP and the Problem of Visualizing the Amplification Products
Johanna Weiss, Hans-Dieter Zucht, and Wolf-Georg Forssmann

(continued)
126 Rapid Isolation of cDNA Clones by Aliquot Testing via PCR Amplification
A. Di Bacco, L. Susani, A. Villa, D. Strina, A. Frattini, P. Vezzoni, and L Zucchi

129 Assessment of Colinearity between Large Cloned DNA Fragments and Genomic DNA
Peter Verhasselt and Guido Volckaert

133 Product news

MANUAL SUPPLEMENT

135 Getting Started: A PCR Primer

137 Contents