BLOW UP YOUR GENOMICS WORKFLOW.

Automate nucleic acid QC and get on with your life sciences.

If sample QC takes you more than two minutes, it’s too manual. Fragment Analyzer™ takes the job off your hands—streamlining lab operations and wiping out errors. Just pipette once and it delivers truly reliable results via automated capillary electrophoresis.

No chips. No tapes. No compromises.
- Setup in seconds
- Get resolution down to 2 base pairs
- Detection starts at 5 pg/µL

DITCH YOUR TIRED OLD WORKFLOW AT AATI-US.COM.
Next Generation Sequencing (NGS) Services

SBS Genetech provides a wide variety of next generation sequencing suitable for most research needs. We offer comprehensive services including library preparation, sample validation, sequencing, and bioinformatics.

- **Comprehensive NGS Services**
 - Genomic DNA Sequencing
 - Strand Specific RNA Sequencing
 - miRNA Sequencing
 - PCR Amplicon Sequencing
 - 16S Metagenomic Sequencing

- **Sequencing Only Services**
 - HiSeq Sequencing
 - MiSeq Sequencing

- **Specialized Sequencing Services**
 - Library Generation
 - Project Planning and Consultation

Interested? Please send your inquiries to order@sbsbio.com

Tel: +86-10-82784296/92 +86-10-62969345/46
Fax: +86-10-82784290 E-mail: order@sbsbio.com
Website: http://www.sbsbio.com
Success is contagious

In 2011, Ion AmpliSeq™ technology enabled targeted sequencing from 10 ng of DNA or less. And the world responded.

In just four years we’ve designed over 25,000 custom panels for researchers around the world. With 10 ng of DNA or less, you can easily target sets of genes, and make sequencing a success for even old or degraded FFPE samples. Now that’s an idea worth spreading.

AmpliSeq it. Because every sample matters.
Get more from your samples at thermofisher.com/ampliseq

For Research Use Only. Not for use in diagnostic procedures. © 2015 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified.
PIONEERING GENOMICS FOR A PRECISION MEDICINE FUTURE

At Human Longevity, we are working to revolutionize the practice of medicine by building the world’s largest database of high quality whole genome and microbiome sequence data, along with phenotype and clinical data. We are enabling pharmaceutical companies, insurers and healthcare providers to impact and improve health. We’re scaling the possibilities of precise medicine.

Join us in our quest.

WWW.HUMANLONGEVITY.COM
The S is for Simplicity

The new Ion S5™ System. Targeted sequencing has never been simpler.

Simple library prep tools, cartridge-based reagents and automated data analysis have reduced DNA-to-data hands-on time to less than 45 minutes. So you’ll spend less time doing routine molecular biology, and more time informing time-sensitive decisions.

Ion AmpliSeq™ technology
As low as 10ng low-quality DNA sample input for library prep

Cartridge-based reagents
Less than 15 minutes of sequencing setup time

2.5 to 4 hours of run time
Fastest run time of any benchtop sequencer

Watch the Ion S5 System in action at thermofisher.com/ionS5
Use Plasmids?

Our repository contains 40,000+ plasmids. Find what you need at www.addgene.org.

CRISPR/Cas9 Plasmids...
- Easy genome engineering tools
- Browse by species or function
- Browse by depositing lab
- Find lab tips, FAQ, and more!

Tool Plasmids...
- Viral packaging
- Biosensors
- Genome engineering
- iPSC generation
- Optogenetics

Empty Backbones...
- Epitope tagging
- Fluorescent protein fusions
- Species-specific expression
- Viral expression

Expression Plasmids...
- Oncogenes/tumor suppressors
- Cell death genes
- Validated shRNAs
- Cell Signalling factors

addgene
The nonprofit plasmid repository
BD FACSeq™ Cell Sorter and BD™ Precise Assays
Gene expression assays for single cells

NGS-ready samples for gene expression
Thousands of single cells, individually barcoded and indexed, now at the transcript level

The new BD FACSeq™ cell sorter selects thousands of individual cells, quickly discarding any dead/dying cells and then isolating them into PCR plates that contain preloaded BD™ Precise reagents for your customized targeted gene expression assays. A much simplified workflow prepares the samples for absolute and direct molecular counting of transcripts by next generation sequencing (NGS), while minimizing amplification bias that can potentially occur in these crucial steps.

The affordable BD FACSeq cell sorter combined with BD Precise assays lets you easily amp up your lab’s productivity to help ensure that your high quality single cell samples are ready for gene expression assays. And, you can significantly increase data accuracy and throughput while controlling costs.

Find out how at: bdbiosciences.com/go/facseq

Class 1 Laser Product.
For Research Use Only. Not for use in diagnostic or therapeutic procedures.
BD, BD Logo and all other trademarks are property of Becton, Dickinson and Company. © 2015 BD
23-17810-00

BD Biosciences
2350 Olime Drive
San Jose, CA 95131
bdbiosciences.com
Tearing down the Exome Barrier

SureSelect Human All Exon V4(51M) or V5(50M) capture kit with 100x RAW DATA on Hiseq4000

$399

Macrogen is dedicated to providing premium NGS services, offering publishable quality data and customer oriented service with scientific integrity.

- Minimum order of 20 samples
- Valid for orders with multiple of 10 samples
- Valid for contracts through September 30th, 2015
- Raw Data Quality: over 80% of bases > Q30
- TAT: 4–6 weeks after Sample QC (Quality Check)

For more information, please visit dna.marogen.com
Please contact NGS service team for more information at ngs@marogen.com
Count on it.

Introducing the NEBNext® Library Quant Kit for Illumina®

Accurate quantitation of next generation sequencing libraries is essential for maximizing sequencing data output and quality. The NEBNext Library Quant Kit for Illumina is a qPCR-based method that delivers higher consistency and reproducibility of quantitation over currently-available methods. With optimized kit components and a more convenient protocol, you can count on your quantitation values, every time.

To learn more and request a sample, visit www.neb.com/E7630

NEW ENGLAND BIO-LABS®, NEW ENGLAND BIO-LABS, and NEB® are registered trademarks of New England Biolabs, Inc.

ILLUMINA® is a registered trademark of Illumina, Inc.
A SMARTer®, Highly Sensitive Tool for Library Prep from Picogram Inputs of Total RNA

SMARTer Stranded Total RNA-Seq Kit - Pico Input Mammalian

Our complete solution, from start to finish

Robust RNA-seq library construction from very low amounts of starting material is challenging, especially with FFPE and laser capture microscopy samples. Our newest release, the SMARTer Stranded Total RNA-Seq Kit - Pico Input Mammalian, excels with input amounts as low as 250 pg of total mammalian RNA. Improve your NGS library prep from picogram amounts of total RNA with a novel, sensitive, and ligation-free kit that generates stranded, Illumina®-ready libraries in 5 hours.

To get started, visit www.clontech.com/total-RNAsseq-pico
Tumor Genomic Profiling Services for Clinical Trials

Comprehensive Coverage, Tailored Results

Based on the Accuracy and Content Enhanced (ACE) platform, our advanced tumor profiling services provide the most complete genomic data from any tumor sample type. Our cancer panel includes coverage of over 1,300 genes, including clinically actionable genes, known driver mutations, immuno-oncology and key cancer pathway genes. Our service is tailored to address the needs of your clinical trial enrollment requirements while simultaneously making a broader research dataset available. As a result, we maximize the return on every tumor sample.

✅ DNA and RNA analysis from a single sample for maximum insight
✅ More coverage of key cancer pathway genes
✅ Alterations reported include SNVs, CNVs, gene fusions and low-level variant expression
✅ Comprehensive analysis with flexible reporting of the complete panel or a focused set of genes, depending on your requirements

www.personalis.com | info@personalis.com
+1 855-GENOME4 (436-6634)
+1 650-752-1300 (outside U.S.)
COMPLETE SUCCESS
BEGINNS WITH NGS SAMPLE QC

Get the confidence that comes from having a complete solution for complete success. The new Agilent 4200 TapeStation system offers automated sample processing and scalable throughput. With its ready-to-use ScreenTape technology the system provides a flexible solution for true end-to-end sample quality control.

• Automated sample processing
• Full range of sizing applications for DNA and RNA
• Flexible sampling from 1 to 96 samples
• Fast, reliable results with ready-to-use ScreenTape consumables
• Only 1 – 2 μL of sample required

www.agilent.com/genomics/CompleteSuccess

See the new instrument at ASHG 2015 Booth 701

For Research Use Only. Not for use in diagnostics procedures.

© Agilent Technologies, Inc. 2015
Discover 1% Somatic Mutation Detection from 10 ng DNA in 2 Hours

Accel-Amplicon™ Panels
Single-tube Multiplex Assays for Illumina® Platforms

- 2 Hour Workflow Sample to Sequencer
- 1% Mutant Allele Frequency Detection
- 10 ng Sample Input
- Validated for Circulating Cell-free DNA, FFPE, Fresh-frozen Samples

www.swiftbiosci.com
University of Illinois College of Medicine
Cancer Biology and Pharmacology
Assistant Professor – Tenure-Track

The Department of Cancer Biology and Pharmacology of the University of Illinois College of Medicine at Peoria (UICOMP) is seeking to expand its faculty and cancer research scope to include four new areas of investigation: (i) Cancer Microbiomics, (ii) Cancer Immunology and Immunotherapy, (iii) Cancer Metabolism, and (iv) Cancer Computational -OMICs and Systems Biology. Applications are therefore invited for four tenure-track Assistant Professor positions in the aforementioned areas. Early career investigators with a solid training in basic science and/or translational research, a strong track record of scholarly productivity, an uncompromised commitment to a culture that is conducive to collaborative interdisciplinary research, and a genuine interest in contributing to the educational mission of the medical school are highly encouraged to apply. The selected candidates will be expected to develop a vibrant and interactive research program to study, respectively, (i) associations of gut microbiome, inflammation and cancer, (ii) cancer immunology and immunotherapy, (iii) metabolic alterations in cancer that may be exploited for development of new therapies, or (iv) a highly interactive systems biology and computational -OMICs cancer research program that will not only provide support for big data analysis, but also will pursue development of innovative methodologies for integrative -OMICs systems-based research. In addition, the selected candidates will be expected to aggressively seek federal funding, and to teach our medical students.

UICOMP is one of the regional campuses of the University of Illinois College of Medicine, and is part of a 900-bed hospital district containing two major hospital systems as well as the medical school. UICOMP’s educational programs include 150 medical students and 240 residents/fellows in 20 different post-graduate programs. This regional campus has made cancer one of its main focus areas of basic and translational science investigation, which is widely supported by the community, clinical and corporate partners. A new 24,000 square foot Cancer Research building provides exceptional laboratory space, state-of-the art research equipment, and core facilities.

The successful candidates will have a Ph.D., M.D., or M.D./Ph.D. in basic science field of health science; 3-7 years of postdoctoral experience; documented experience in molecular and/or cellular cancer research, genetics and molecular biology, -OMICs, biochemistry, or biophysics, and specific training in cancer microbiomics, cancer immunology, cancer metabolism, or cancer computational OMIC -s and systems biology; and solid record of scholarly productivity, as evidenced by peer-reviewed publications, fellowship awards, participation in national and international meetings.

For fullest consideration, please respond by October 26, 2015. Applicants should submit a cover letter, curriculum vitae, the names and contact information of three references, summary of research contributions, a research plan and statement of research interests, and teaching goals and preferred approaches. To apply, click on the following link: https://jobs.uic.edu/job-board/job-details?jobID=55477.

The University of Illinois is an affirmative action/equal opportunity employer. Minorities, women, veterans, and individuals with disabilities are encouraged to apply.
2015-2016

SCIENTIFIC CONFERENCES

Presenting the most significant research on cancer etiology, prevention, diagnosis, and treatment

The Basic Science of Sarcomas
Co-Chairpersons: Robert G. Maki, Angelo Paolo Dei Tos, Jonathan A. Fletcher, Lee J. Helman, and Brian A. Van Tine
November 3-4, 2015 • Salt Lake City, UT

AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics
Scientific Committee Co-Chairpersons: Levi A. Garraway, Lee J. Helman, and Jean-Charles Soria
November 5-9, 2015 • Boston, MA

Advances in Pediatric Cancer Research: From Mechanisms and Models to Treatment and Survivorship
Co-Chairpersons: Scott A. Armstrong, Charles G. Mullighan, Kevin M. Shannon, and Kimberly Stegmaier
November 9-12, 2015 • Fort Lauderdale, FL

New Horizons in Cancer Research: Bringing Cancer Discovered to Patients Shanghai 2015
Co-Chairpersons: Lewis C. Cantley and Carlos L. Arteaga
November 12-15, 2015 • Shanghai, China

Eighth AACR Conference on the Science of Cancer Health Disparities in Racial/Ethnic Minorities and the Medically Underserved
Co-Chairpersons: John M. Carethers, Marcia R. Cruz-Correa, Mary Jackson Scroggins, Edith A. Perez, Betti Thompson, and Cheryl L. Willman
November 13-16, 2015 • Atlanta, GA

11th Annual Personalized Medicine Conference
Co-Chairpersons: Raju Kucherlapati and Scott Weiss
November 18-19, 2015 • Boston, MA

Developmental Biology and Cancer
Co-Chairpersons: Suzanne Baker, Hans Clevers, and Stuart Orkin
November 30-December 3, 2015 • Boston, MA

Tumor Metastasis
Co-Chairpersons: Bruce R. Zetter, Melody A. Swartz, and Jeffrey W. Pollard
November 30-December 3, 2015 • Austin, TX

CSHA/AACR Joint Meeting: Big Data, Computation, and Systems Biology in Cancer
Conference Organizers: Andrea Califano, William C. Hahn, Satoru Miyano, and Xuegong Zhang
December 2-5, 2015 • Suzhou, China

EORTC-NCI-EMA-AACR International Conference on Innovation and Biomarkers in Cancer Drug Development
Co-Chairpersons: Denis A. Lacombe and John W. Martens
December 3-4, 2015 • Brussels, Belgium

Noncoding RNAs and Cancer
Co-Chairpersons: Howard Y. Chang, Jeannie T. Lee, and Joshua Mendell
December 4-7, 2015 • Boston, MA

San Antonio Breast Cancer Symposium
Co-Directors: Carlos L. Arteaga, Virginia Kaklamani, and C. Kent Osborne
December 8-12, 2015 • San Antonio, TX

Fourth AACR-IALC International Joint Conference: Lung Cancer Translational Science-From the Bench to the Clinic
Co-Chairpersons: Karen L. Kelly and Alice T. Shaw
January 4-7, 2016 • San Diego, CA

The Function of Tumor Microenvironment in Cancer Progression
Co-Chairpersons: Raghu Kalluri, Robert A. Weinberg, Douglas Hanahan, and Morag Park
January 7-10, 2016 • San Diego, CA

Patient-Derived Cancer Models: Present and Future Applications from Basic Science to the Clinic
Co-Chairpersons: Manuel Hidalgo, Hans Clevers, S. Gail Eckhardt, and Joao Seoane
February 11-14, 2016 • New Orleans, LA

10th AACR-JCA Joint Conference on Breakthroughs in Cancer Research: From Biology to Therapeutics
Co-Chairpersons: Frank McCormick and Tetsuo Noda
February 16-20, 2016 • Maui, HI

AACR Precision Medicine Series: Cancer Cell Cycle-Tumor Progression and Therapeutic Response
Co-Chairpersons: Julien Sage, Karen E. Knudsen, and J. Alan Diehl
February 28-March 2, 2016 • Orlando, FL

AACR Annual Meeting 2016
Program Committee Chairperson: Scott A. Armstrong
April 16-20, 2016 • New Orleans, LA

Learn more and register at www.AACR.org/Calendar
NEXT-GENERATION DNA SEQUENCING INFORMATICS
SECOND EDITION

Edited by Stuart M. Brown, New York University School of Medicine

Next-generation DNA sequencing (NGS) technology has revolutionized biomedical research, making genome and RNA sequencing an affordable and frequently used tool for a wide variety of research applications including variant (mutation) discovery, gene expression, transcription factor analysis, metagenomics, and epigenetics. Bioinformatics methods to support DNA sequencing have become and remain a critical bottleneck for many researchers and organizations wishing to make use of NGS technology. This new edition provides a thorough, plain-language introduction to the necessary informatics methods and tools for analyzing NGS data and provides detailed descriptions of algorithms, strengths and weaknesses of specific tools, pitfalls, and alternative methods. Four new chapters cover experimental design, sample preparation, and quality assessment of NGS data; public databases for DNA sequencing data; de novo transcript assembly; proteogenomics; and emerging sequencing technologies. The remaining chapters from the first edition have been updated with the latest information. This book also provides extensive reference to best-practice bioinformatics methods for NGS applications and tutorials for common workflows. This edition addresses the informatics needs of students, laboratory scientists, and computing specialists who wish to take advantage of the explosion of research opportunities offered by new DNA sequencing technologies.

2015, 402 pages, illustrated (81 4C, 20 B&W), index
Hardcover $61

CONTENTS
Preface
Acknowledgments
About the Authors
1 Introduction to DNA Sequencing
 Stuart M. Brown
2 Quality Control and Data Preprocessing
 Stuart M. Brown
3 History of Sequencing Informatics
 Stuart M. Brown
4 Public Sequence Databases
 Stuart M. Brown
5 Visualization of Next-Generation Sequencing Data
 Phillip Ross Smith, Kraniti Konganti, and Stuart M. Brown
6 DNA Sequence Alignment
 Efstratios Efthathiadis
7 Genome Assembly Using Generalized de Bruijn Digraphs
 D. Frank Hsu
8 De Novo Assembly of Bacterial Genomes from Short Sequence Reads
 Silvia Argimón and Stuart M. Brown
9 De Novo Transcriptome Assembly
 Lisa Cohen, Steven Shen, and Efstratios Efthathiadis
10 Genome Annotation
 Steven Shen and Stuart M. Brown
11 Using Next-Generation Sequencing to Detect Sequence Variants
 Jinhua Wang, Zuojian Tang, and Stuart M. Brown
12 ChiP-seq
 Stuart M. Brown, Zuojian Tang, Christina Schweikert, and D. Frank Hsu
13 RNA Sequencing with Next-Generation Sequencing
 Stuart M. Brown and Jeremy Goecks
14 Metagenomics
 Guillermo I. Perez-Perez, Miroslav Blumenberg, and Alexander V. Alekseyenko
15 Proteogenomics
 Kelly V. Ruggles and David Fenyö
16 Emerging DNA Sequencing Technologies and Applications
 Gerald A. Higgins and Brian D. Astey
17 Cloud-Based Next-Generation Sequencing Informatics
 Konstantinos Krampis, Efstratios Efthathiadis, and Stuart M. Brown
Glossary
Index

www.cshlpress.org
Orphan

THE QUEST TO SAVE CHILDREN WITH RARE GENETIC DISORDERS

By Philip R. Reilly, MD, JD

Orphan is about the struggle to save the lives of children who, because of an unlucky roll of the genetic dice, are born with any one of several thousand rare genetic disorders. Many are burdened with diseases that carry mysterious names, some of which you can read about for the first time in this book, along with compelling stories about the physicians, scientists, and parents who have taken them on. The diseases include phenylketonuria, sickle cell anemia, dystrophic epidermolysis bullosa, X-linked hypohidrotic ectodermal dysplasia, and Friedreich’s ataxia—just a few of the more than 1000 genetic disorders that are well-described and many more that are not. Many manifest in infancy. Some show up in mid-childhood, others later in childhood, and still others among adults. They touch almost every extended family. Orphan is more than a book about disease and research—it gives voice to thousands of people who, all too often, have endured terrible illnesses, bravely faced arduous clinical trials, and, sometimes, have gained victories, almost always in silence. This book recounts extraordinary breakthroughs and hopes for the future. Many of the disorders that will end our lives are in some part genetically influenced. We really are all orphans, and this book is for all of us.

2015, 408 pages, illustrated (12 page insert of B&W images), index
Hardcover $29

Contents
Preface
Acknowledgments
Introduction
1. Diet
2. The Rise of Medical Genetics
3. Blood
4. Genetic Testing: Avoiding Disease
5. Stem Cells: Creating Human Mosaics
6. Enzyme Replacement Therapy: Genetically Engineered Drugs
7. Gene Therapy: Using Viruses to Deliver Normal Genes
8. Overcoming Mutations
9. Butterfly Children: Rebuilding the Skin
10. Ligands: Turning Genes On
11. Mending Broken Proteins
12. What Is Next: Emerging Therapies
13. We Are All Orphans: Lessons for Common Diseases
Bibliography
Index

About the author: Philip R. Reilly earned his undergraduate degree at Cornell University, studied human genetics at the University of Texas Graduate School of Biomedical Sciences, and graduated from Yale Medical School in 1981. He did his medical residency at Boston City Hospital. He earned board certification in internal medicine and clinical genetics, and a law degree at Columbia University. He has served on the Board of Directors of the American Society of Human Genetics, and he is a Founding Fellow of the American College of Medical Genetics. He twice served as President of the American Society of Law, Medicine, and Ethics. During the 1990s, Reilly was the Executive Director of the Eunice Kennedy Shriver Center for Mental Retardation in Waltham, Massachusetts, a nonprofit that worked on understanding childhood and adult neurological disorders. Dr. Reilly has held faculty positions at Harvard Medical School and Brandeis University. Since 2009 he has worked as a venture partner at Third Rock Ventures in Boston where he focuses on helping to start companies to develop innovative therapies for orphan genetic diseases. Over the years he has published six books and many articles about the impact of advances in genetics. Reilly frequently works with patient groups who are concerned with rare genetic disorders.

Learn more, read a free chapter, and order your copy today! Visit cshlpress.org/orphan
Goodbye thermocycler.

Enjoy more playtime with Recombinase Polymerase Amplification (RPA) the isothermal amplification that really works. RPA uses a recombinase-based process instead of thermocycling to amplify DNA, meaning real-time detection within 15 minutes.

Read over 70 RPA publications @ twistdx.co.uk/publications
Millions of dots, each with a unique story

Every cell is a mystery waiting to be revealed. From phenotype, genomic expression, cytokine secretion, signaling activity or general health, flow cytometry is uniquely equipped to interrogate every facet of biology, all within a single cell. Let eBioscience flow cytometry reagents help you uncover the story that each cell contains within.

Don’t settle for average. Real insight starts with single cells.

Learn more at www.affymetrix.com/single-cell-genres

© 2015 Affymetrix, Inc. All rights reserved. For Research Use Only. Not for use in diagnostic or therapeutic procedures.