BLOW UP YOUR GENOMICS WORKFLOW.

Automate nucleic acid QC and get on with your life sciences.

If sample QC takes you more than two minutes, it’s too manual. Fragment Analyzer™ takes the job off your hands—streamlining lab operations and wiping out errors. Just pipette once and it delivers truly reliable results via automated capillary electrophoresis.

No chips. No tapes. No compromises.

- Setup in seconds
- Get resolution down to 2 base pairs
- Detection starts at 5 pg/µL

DITCH YOUR TIRED OLD WORKFLOW AT AATI-US.COM.

ADVANCED ANALYTICAL
Next-Generation Genome Engineering Technologies & Services

One-Step Stable Transfection & Transgenesis
Targeted Knockouts
Gene Editing Base-Pair Changes

Knock-ins & Humanization

Targeted Selection Markers

With So Many Opportunities What Are You Waiting For?

Footprint-Free™ Gene Editing
NextGEN™ CRISPR

XTN™ TALEN
Stable Transfection Kits & piggyBac™ Transposon

Cell Line & Rodent Model Engineering Services

Your Next Discovery Awaits

Transposagen

I-844-GEN-EDIT
info@transposagenbio.com
www.transposagenbio.com
See cells differently
Phenotype cells & detect RNA transcripts using flow cytometry

Need to take a closer look at your cells signature? Want to understand transcription regulation and patterns? Is RNA expressed intermittently or consistently?

Gain insight into single cell analysis with the QuantiGene® FlowRNA Assay, a novel multiplex RNA hybridization protocol using a standard flow cytometer. Choose from a catalog of more than 4,000 probes or request a custom set at no additional charge.

Show Me Data
Download scientific poster at ebioscience.com/FlowRNA-Genes

eBioscience, an Affymetrix company, provides innovative solutions to researchers and clinicians worldwide looking to answer questions driving today’s life science community.

Biology for a better world.
NORTH AMERICA: 888.999.1371 • EUROPE: +43 1 796 40 40 304 • JAPAN: +81 (0) 3 6430 4020 • INQUIRIES: info@ebioscience.com
©Affymetrix, Inc. All rights reserved. For Research Use Only. Not for use in diagnostic or therapeutic procedures.
immunogenomics 2014

Join international leaders in immunogenomics as they discuss their cutting-edge research.

September 29 – October 1, 2014
HudsonAlpha Biotechnology Campus
Huntsville, AL USA

Abstract deadline: July 18, 2014
Early booking deadline: August 1, 2014

Register today at immunogenomics.com

Our Keynote Speakers:

Christophe Benoiste
Professor, Department of Microbiology and Immunobiology, Harvard Medical School

Mary Ellen Conley
Federal Express Chair of Excellence and Professor, Department of Pediatrics, University of Tennessee, College of Medicine, Memphis

Mark Davis
Investigator, Howard Hughes Medical Institute; Professor, Department of Microbiology and Immunology; Director, Institute for Immunity, Transplantation, and Infections, Stanford University School of Medicine

presented by

HudsonAlpha Institute for Biotechnology

Science

AAAS
FLYING SAUCER OR FRISBEE?

Don’t let ambiguous images lead you to the wrong conclusions. Get definitive results with RNAscope® technology.

IHC fails to detect Napsin A expression in lung adenocarcinoma

RNAscope ISH detects Napsin A RNA molecules in the same specimen

Take the RNAscope challenge:
Are IHC antibodies giving you ambiguous results? RNAscope is an RNA biomarker detection technology that delivers single molecule sensitivity with single cell resolution. Try RNAscope ISH and we’ll credit your antibody expenses towards your purchase. We guarantee that RNAscope assay will work with your samples.*

Learn more at acdbio.com/RNAscopechallenge

*Share your poor antibody results and expenses with us. We will provide you a credit of up to $500 USD towards your purchase of RNAscope products, and guarantee that RNAscope will work with any samples where RNA is present. Limit one promotional credit per antibody.

For Molecular Biology Applications (WBA), not intended for diagnosis. Refer to appropriate regulations. RNAscope® is a registered trademark of Advanced Cell Diagnostics, Inc.
Dominate the NGS Data Wave with Maverix Analytic Platform

Watch a short video to learn more:
maverixbio.com/view-demo

With the Maverix Analytic Platform, you can take control of your NGS data analysis. Upload your FASTQ files directly in your web browser, configure and launch an analysis in less than 5 minutes. Visualize and discover the biology using the integrated UCSC genome browser.

Finally, a bioinformatics tool designed for the biologist!

Directly in your web browser. Start an analysis in less than 5 min. Monitor real-time progress. Visualize your results in ~24 hours.
Customized target enrichment powered by Single Primer Enrichment Technology — interrogate up to 10Mb target regions in a complete library solution with as little as 10 ng gDNA input.

One tube. One day. It’s that simple.
Why compromise on your RNA-seq data?

cDNA Synthesis Kits

High-quality data from low-input RNA samples
SMARTer® Stranded RNA-Seq Kits for transcriptome analysis

Low-input RNA-seq libraries for Illumina® sequencing
SMARTer Stranded RNA-Seq Kits generate RNA-seq libraries for Illumina sequencing from 100 pg–100 ng input RNA. These random-primed kits allow for transcriptome analysis of RNA samples of any quality, capturing data from both coding and non-coding RNA while retaining strand of origin information.

The SMARTer Stranded method is compatible with the new RiboGone™ - Mammalian kit to seamlessly integrate rRNA removal from low-input samples (10–100 ng) with Illumina-ready library production. The entire integrated workflow can be completed in less than 5 hours.

See more data at
www.clontech.com/SMARTer-stranded
or call 1.800.662.2566

Scan to find out more
FOCUS ON GENOMICS

NEXT GENERATION SEQUENCING & BIOINFORMATICS SOLUTIONS

Comprehensive Service Suite
- Whole Genome Sequencing
- Exome Sequencing
- RNA-seq
- ChIP-seq
- Library Preparation

Specialized Solutions
- TargetGxOne™ Custom Gene Panels
- OncoGxOne™ Discovery Cancer Panels
- Adventitious Agent Contamination Testing
- 16S MetaVx™ Sequencing
- Express NGS™

FOR MORE INFORMATION CONTACT:
GENEWIZ Project Management • 908-222-0711 • PM@genewiz.com
www.genewiz.com
CLOSE YOUR GENOME
with True Mate Pair Libraries

- Larger N50
- Longer Scaffolds
- User-defined inserts up to 8 kb

Learn more >
lucigen.com/matepair

Revoluntary
NxSeq 2-8 kb
Mate Pair

Conventional
Methods
Interested in DNA methylation & RNA-seq?

Want to make the most out of your FFPE tumor & normal samples?

Looking to unlock genomic data?

Indeed

Yes, please

Absolutely

APPLY TODAY for the 2014 ONCOLOGY RESEARCH GRANT

Introducing the 2014 Oncology Research Grant from EA | Quintiles. Together with Illumina, we're giving two deserving researchers the power to tap into the wealth of genomic data locked within FFPE samples using an innovative technique developed by EA | Quintiles using Illumina's RNA Access method. Unleash the power of your research with:

- Coding Transcriptome RNA-seq Analysis
- Genome-wide DNA Methylation Interrogation

DEVELOP A BETTER UNDERSTANDING OF CANCER BIOLOGY, ONE GENE AT A TIME. APPLY TODAY.

> EXPRESSIONANALYSIS.COM/GRANT
"The book I wish had been available when starting my first company."

Connecting with Companies
A Guide to Consulting Agreements for Biomedical Scientists

Edward Klees, J.D., General Counsel at the University of Virginia Investment Management Company

H. Robert Horvitz, Ph.D., 2002 Nobel Laureate in Physiology or Medicine; Professor of Biology, MIT; Member, McGovern Institute for Brain Research, MIT; Member, Koch Institute for Integrative Cancer Research, MIT; Investigator, Howard Hughes Medical Institute

An essential guide for academic scientists and physicians who are considering consulting work in biomedicine

Before signing a consulting agreement, this must-have reference will help you understand the key issues to consider—from intellectual property, confidentiality, and compensation, to often overlooked issues such as indemnity, different classes of stock, and the relevance of insider trading and securities laws. Read Connecting with Companies and you will:

- Gain invaluable, first-hand advice from the authors: a leading attorney and a Nobel Laureate in Physiology or Medicine, both with extensive experience reviewing and negotiating consulting agreements
- Receive guidance for academics, lawyers, accountants, auditors, venture capitalists, and technology transfer departments of universities, hospitals, and research organizations
- Understand crucial start-up issues such as 83b tax election and participating preferred stock

2014, 156 pp., glossary, index
Hardcover $39

ISBN 978-1-621821-07-6

"This is the book I wish had been available when I started my first company. I learned an enormous amount from it."
—Roger Tsien, University of California at San Diego, Nobel Laureate in Chemistry, 2008

"I loved this book and all potential consultants in the biomedical field will find it enlightening. I highly recommend it."
—Katherine Ku, Director of the Office of Technology Licensing, Stanford University

“Consulting agreements between academic scientists and corporations protect discoveries and intellectual property and address legal aspects of their commercial development. In this book, the authors apply academic rigor to the principles and subtleties of these agreements, making it worthwhile reading for any academic scientist with an interest in the corporate world.”
—Anshert K. Gadieke, Managing Director, MPM Capital

“In this valuable guide, the authors provide a crisp introduction to key issues in academic-industry interactions, making it a must-read for any academic contemplating entry into a consulting agreement.”
—Marc Tessier-Lavigne, President, The Rockefeller University

For more information, and easy online ordering, visit:
www.bioagreements.com
Sequencing power for every scale.

NEW HiSeq X™ Ten

Population power.
$1000 human genome and extreme throughput for population-scale sequencing.

HiSeq® 2500

Production power.
Power and efficiency for large-scale genomics.

NEW NextSeq™ 500

Flexible power.
Speed and simplicity for whole-genome, exome, and transcriptome sequencing.

MiSeq®

Focused power.
Speed and simplicity for targeted and small-genome sequencing.

MiSeqDx™

Focused Dx power.
The first and only FDA-cleared in vitro diagnostic next-generation sequencing system.

Find the right sequencer to fit your every need. www.illumina.com/power

©2014 Illumina, Inc. All rights reserved.
Easy exome sequencing

Introducing the new Ion AmpliSeq™ Exome RDY Kit for the Ion Proton™ System

Now, more research laboratories can adopt the power of exome sequencing. Identify relevant variants in rare and complex disorders faster—with increased throughput, high accuracy, and the simplest workflow from sample preparation to data analysis.

- Simplify your exome enrichment
- Sequence exomes in your lab
- Easily identify relevant variants

Learn more about exome sequencing at lifetechnologies.com/ionexomerdy

For Research Use Only. Not for use in diagnostic procedures. © 2014 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. C026996-0514
SCIENTIFIC CONFERENCES
2014-2015

Presenting the most significant research on cancer etiology, prevention, diagnosis, and treatment

Marsha Rivkin Center for Ovarian Cancer Research-AACR 10th Biennial Ovarian Cancer Research Symposium
Co-Chairpersons: Kathleen Cho, Sandra Orsulic, Mary L. "Nora" Disis, and Saul E. Rivkin
September 8-9, 2014
Seattle, WA

Targeting PI3K-mTOR Networks in Cancer
Co-Chairpersons: Lewis C. Cantley, Jose Baselga, Joan S. Brugge, Brendan D. Manning, and Malle Peters
September 14-17, 2014
Philadelphia, PA

Hematologic Malignancies: Translating Discoveries to Novel Therapies
Chairperson: Kenneth C. Anderson
Co-Chairpersons: Scott Armstrong and Riccardo Dalla-Favera
September 20-23, 2014
Philadelphia, PA

Advances in Melanoma: From Biology to Therapy
Co-Chairpersons: Suzanne L. Topalian, Keith T. Flaherty, and Levi A. Garraway
September 20–23, 2014
Philadelphia, PA

13th Annual International Conference on Frontiers in Cancer Prevention Research
Program Committee Chairperson: Phillip A. Dennis
September 28-October 1, 2014
New Orleans, LA

Seventh AACR Conference on the Science of Cancer Health Disparities in Racial/Ethnic Minorities and Medically Underserved
Co-Chairpersons: Ethan Dmitrovsky, Rick A. Kittles, Electra D. Paskett, and Victoria L. Seewaldt
November 9-12, 2014
San Antonio, TX

EORTC-NCI-AACR International Symposium on Molecular Targets and Cancer Therapeutics
Scientific Committee Co-Chairpersons:
Jean-Charles Soria, Lee J. Helman, and Jeffrey A. Engelman
November 18-21, 2014
Barcelona, Spain

Tumor Immunology and Immunotherapy: A New Chapter
Co-Chairpersons: Robert H. Vonderheide, Nina Bhardwaj, Stanley Riddell, and Cynthia L. Soars
December 1-4, 2014
Orlando, FL

San Antonio Breast Cancer Symposium
Co-Directors: Carlos L. Arteaga, Ismail Jatoi, and C. Kent Osborne
December 9-13, 2014 • San Antonio, TX

Myc: From Biology to Therapy
Co-Chairpersons: James E. Bradner, Martin Eilers, Dean W. Felsher, and Carla Grandori
January 7-10, 2015 • La Jolla, CA

Translation of the Cancer Genome
February 7-9, 2015
Co-Chairpersons: William Hahn, Lynda Chin, and William Sellers

Computational and Systems Biology of Cancer
February 9-11, 2015
Co-Chairpersons: Andrea Califano, Brenda Andrews, and Peter Jackson
The Fairmont, San Francisco, CA

AACR-Society of Nuclear Medicine and Molecular Imaging Joint Conference: Molecular Imaging in Cancer Biology and Therapy
Co-Chairpersons: Carolyn J. Anderson, Christopher H. Contag, and David Pwnica-Worms
February 11-14, 2015 • San Diego, CA

www.AACR.org/Conferences2014
PURIFYING AND CULTURING NEURAL CELLS
A LABORATORY MANUAL

Edited by Ben A. Barres, Stanford University School of Medicine and Beth Stevens, Boston Children’s Hospital, Harvard Medical School

Composed of countless neurons, glia, and vascular cells, the nervous system innervates all parts of the body to function as a vast communication network. This complexity makes it challenging to examine neural properties at the cellular and molecular levels. Cell culture systems for specific neural cell types are thus essential for studies of their development and function. This laboratory manual provides step-by-step protocols for isolating specific cell populations from rodent tissues and culturing them under conditions that closely resemble those in vivo. The contributors describe in detail how to dissect the brain, spinal cord, and other tissues; how to separate cells using mechanical and enzymatic tissue-dissociation strategies; the use of immunopanning and fluorescence-activated cell sorting (FACS) to enrich the target cell population; and the culture conditions that optimize cell viability and growth. Retinal ganglion cells, motor neurons, dorsal root ganglion cells, astrocytes, oligodendrocytes, and Schwann cells are covered, as are vascular cells such as pericytes and endothelial cells. Myelinating cocultures of neurons and oligodendrocytes are also described.

The manual includes detailed recipes for media and reagents, tips for avoiding common pitfalls, and advice for designing new immunopanning protocols using tissues from other sources. Many of the protocols are accompanied by freely accessible online movies that demonstrate critical steps of the procedures. This is an essential laboratory companion for all neurobiologists, from the graduate student level upward.

2013, 205 pages, illus. (24 4C images and 3 B&W), index
Hardcover $135
Paperback $89

ISBN 978-1-621820-11-6

Contents
Introduction
Ben A. Barres

SECTION I. CENTRAL NERVOUS SYSTEM NEURONS
CHAPTER 1 INTRODUCTION
Purification and Culture of Retinal Ganglion Cells
Alissa Wenzler and Jack T. Wang

PROTOCOLS
1 Purification and Culture of Retinal Ganglion Cells from Rodents
Alissa Wenzler and Jack T. Wang
2 Culturing Hybridoma Cell Lines for Monoclonal Antibody Production
Alissa Wenzler and Jack T. Wang

CHAPTER 2 INTRODUCTION
Purification and Culture of Corticospinal Motor Neurons
Wim Maudsmaerk

PROTOCOLS
1 Retrograde Labeling of Corticospinal Motor Neurons from Early Postnatal Rodents
Wim Maudsmaerk
2 Immunopanning of Retrogradely Labeled Corticospinal Motor Neurons from Early Postnatal Rodents
Wim Maudsmaerk

CHAPTER 3 INTRODUCTION
Purification and Culture of Spinal Motor Neurons
David J. Graher and Brent T. Harris

PROTOCOLS
1 Purification and Culture of Spinal Motor Neurons from Rat Embryos
David J. Graher and Brent T. Harris

CHAPTER 4 INTRODUCTION
Purification and Culture of Dorsal Root Ganglion Neurons
J. Bradley Zabierek

PROTOCOLS
1 Purification of Dorsal Root Ganglion Neurons from Rat by Immunopanning
J. Bradley Zabierek

CHAPTER 5 INTRODUCTION
Purification and Culture of Astrocytes
Lynece C. Fino

PROTOCOLS
1 Purification of Rat and Mouse Astrocytes by Immunopanning
Lynece C. Fino
2 Purification of Astrocytes from Transgenic Rodents by Fluorescence-Activated Cell Sorting
Lynece C. Fino

CHAPTER 6 INTRODUCTION
Purification and Culture of Central Nervous System Pericytes
Lu Zhou, Fabien Sehet, and Richard Dwaneman

PROTOCOLS
1 Purification of Pericytes from Rodent Optic Nerve by Immunopanning
Lu Zhou, Fabien Sehet, and Richard Dwaneman

CHAPTER 7 INTRODUCTION
Purification and Culture of Central Nervous System Endothelial Cells
Lu Zhou, Fabien Sehet, and Richard Dwaneman

PROTOCOLS
1 Purification of Endothelial Cells from Rodent Brain by Immunopanning
Lu Zhou, Fabien Sehet, and Richard Dwaneman

SECTION II. ASTROCYTES AND VASCULAR CELLS
CHAPTER 8 INTRODUCTION
Purification and Culture of Oligodendrocyte Precursor Cells from Rat Cortices by Immunopanning
Jason C. Dogas and Ben Emery

PROTOCOLS
1 Purification of Oligodendrocyte Precursor Cells from Rat Cortices by Immunopanning
Jason C. Dogas and Ben Emery

2 Purification of Oligodendrocyte Lineage Cells from Mouse Cortices by Immunopanning
Ben Emery and Jason C. Dogas

CHAPTER 9 INTRODUCTION
Myelinating Cocultures of Purified Oligodendrocyte Lineage Cells and Retinal Ganglion Cells
Trent A. Watkins and Anja R. Schloës

PROTOCOLS
1 Myelinating Cocultures of Rat Retinal Ganglion Cell Reaggregates and Optic Nerve Oligodendrocyte Precursor Cells
Trent A. Watkins and Anja R. Schloës

CHAPTER 10 INTRODUCTION
Purification of Schwann Cells
Amanda Brooks Lutz

PROTOCOLS
1 Purification of Schwann Cells from the Neonatal and Adult Mouse Peripheral Nerve
Amanda Brooks Lutz

APPENDICES
APPENDIX 1
Designing and Troubleshooting Immunopanning Protocols for Purifying Neural Cells
Ben A. Barres

APPENDIX 2
General Safety and Hazardous Material Information
Index

www.cshlpress.org