Generation of Cohesive Ends on PCR Products by UDG-mediated Excision of dU, and Application for Cloning into Restriction Digest-linearized Vectors

Conrad Smith, Philip J.R. Day, and Matthew R. Walker

1Molecular Biology Research Group, University Department of Clinical Biochemistry, Wolfson Research Laboratories, Queen Elizabeth Medical Centre, Edgbaston, Birmingham B15 2TH, UK; 2Department of Oncology, The Children’s Hospital, Ladywood Middleway, Birmingham B16 8ET, UK

We have investigated the use of dU excision by uracil N-glycosylase (UDG) to create cohesive ends on PCR fragments “mimicking” those generated by restriction enzymes. The feasibility of this approach for directional and nondirectional cloning using cohesive ends mimicking SacI or PstI ends is demonstrated by the subcloning of a 383 to 388-bp fragment of bovine basic fibroblast growth factor into restriction enzyme-linearized pTTT318U. UDG-mediated cohesive ends imperfectly matched to PstI-generated vector ends gave reasonable cloning efficiency and accuracy, suggesting that the approach may be extended to mimicry of other restriction enzymes producing 3' overhangs. The rapid and specific excision of dU by UDG (within 30 min at 37°C) has several potential advantages over the use of restriction site-modified primers, including the avoidance of restriction cleavage at internal sites within the PCR product. Also, following ligation, the approach described may be used to prevent subsequent cleavage of the joined DNA segments by the restriction enzyme, that is, by not recreating the restriction enzyme recognition sequence at the junction, which may find application in gene engineering. By adapting the approach to use dU-containing linkers or “vectorettes,” the approach may be used for cloning unknown sequences (e.g., by cDNA or genomic library construction) or for mimicking 5’ overhang cohesive ends on PCR fragments.

Several PCR methods have been described for nondirectional and directional cloning (or subcloning) of PCR products as blunt-ended or cohesive-ended fragments.1-6 Blunt-ended cloning is generally of low efficiency, despite the use of fill-in reactions (e.g., using Klenow),6 although higher efficiencies have been obtained if PCR products are subjected to proteinase K digestion (to remove bound Taq polymerase) prior to ligation.7,8 Cohesive end cloning of PCR products generated by the inclusion of restriction enzyme recognition sequences in the amplimers gives higher cloning efficiencies,8 although the position and nature of the recognition sequences within the amplimers may influence both amplification efficiency and specificity, and subsequent restriction digest efficiency.21 Furthermore, cleavage at nonamplimer restriction sites may prevent cloning of full-length PCR products. More recently, an efficient cloning procedure has been developed whereby dT residues are replaced by dU within the amplimers and cohesive ends are generated by dU excision using uracil DNA-glycosylase (UDG).9,10 Here, we report an alternative strategy on the basis of inclusion of a single dU residue within the 5’ proximal portion of PCR amplimers which, following amplification, allows specific digestion of the PCR products with UDG to generate 3' overhang cohesive ends “mimicking” those generated by restriction enzymes. These cohesive ends are then capable of annealing to restriction enzyme-generated cohesive ends for directional and nondirectional cloning of PCR products. The feasibility of the approach is demonstrated for the subcloning of a protein-encoding fragment of a bovine basic fibroblast growth factor (FGF) cDNA clone11 by mimicry of SacI and/or PstI cohesive ends. The data demonstrate that this approach can be used successfully for PCR cloning into the polylinkers of existing vectors with roughly equal efficiency to that obtained using restriction enzyme-based approaches. Incorporating dU at differing positions within the amplimers, giving more or less compatibility between PCR product and linearized vector cohesive ends, also highlights parameters that may affect the overall utility of this strategy; for example, the numbers of restriction enzyme sites that can be successfully mimicked. The approach offers several technical advantages and may be used to recreate or abolish the mimicked restriction site; we have termed the latter invisible mending.

MATERIALS AND METHODS

Oligonucleotides

Oligonucleotides for the amplification of a 383- to 388-bp fragment of bovine basic fibroblast growth factor were synthesized on an Applied Biosystems 392 DNA synthesizer. The monomer concentration was adjusted to 200 μM. The following oligonucleotides were used:

- 5'-GATGAGAGTACCCACCGGATCC-3'
- 5'-GATGAGAGTACCCACCGGGG-3'
- 5'-GATGAGAGTACCCACCGGTTTCT-3'
- 5'-GATGAGAGTACCCACCGGTTTCTTG-3'

These oligonucleotides were designed to have a single dU residue at the 5’ proximal end of the amplimer to allow specific digestion by UDG. The oligonucleotides were purified by HPLC and lyophilized to dryness before use.

PCR Conditions

PCR reactions were performed in a final volume of 50 μL using a GeneAmp PCR System 2700 (Perkin-Elmer). The reaction mix contained 200 μM of each primer, 1X Taq DNA polymerase buffer (Perkin-Elmer), 200 μM of each dNTP, and 2.5 units of Taq DNA polymerase (Perkin-Elmer). Amplification was carried out with an initial denaturation step at 94°C for 4 min, followed by 30 cycles of 94°C for 30 sec, 55°C for 30 sec, and 68°C for 1 min. The final extension step was performed at 68°C for 7 min. Following amplification, the PCR products were analyzed on a 1% agarose gel.
basic FGF were designed using published cDNA sequence data and synthesized using standard chemistries, by Dr. J.E. Fox (Alta Bioscience, Birmingham University, Department of Biochemistry, Birmingham, UK). Deoxyuracil triphosphate (dUTP) analogs were purchased from Cruachem (Glasgow, UK). The sequence and nomenclature given to the primers are shown in Figure 1, which also shows the nature of cohesive ends expected following digestion with BglII, PstI, or UDG.

To act as tracers to monitor digestion efficiency, forward (5’) primers were 5’ end-labeled using [32P]dCTP using a kit supplied by Amersham International plc (Buckinghamshire, UK).

PCR amplifications

PCR reactions were performed in a total volume of 50 μl [reaction buffer = 10 mM Tris (pH 8.3), 50 mM KCl, 1.5 mM MgCl₂, 0.001% gelatin] containing 0.2 mM of each dNTP, 1 μM of each primer, and 0.1 ng of template DNA. A 1.4-kb (bases 1–1401) portion of a bovine basic FGF cDNA insert excised from the plasmid pBR322 using EcoRI (11) (the plasmid was a kind gift from Dr. Andrew Baird, Whittier Institute, LaJolla, CA) was used as original template. After initial denaturation at 98°C for 7 min, 2.5 units of Taq DNA polymerase (Advanced Biotechnologies Ltd., London, UK) was added, followed by 30 amplification cycles consisting of 96°C for 2 min, 45°C for 1 min, and 72°C for 2 min (although higher annealing temperatures have also been used).

Enzyme digestion of PCR products

Directly following amplification, 1 unit of UDG (Perkin-Elmer Cetus, ILS, London, UK) was added and the reaction mixtures incubated at 37°C for 30 min. The weakened DNA backbone was cleaved either by heat denaturation (98°C for 15 min) or by the addition of 0.2 volumes of 1 M NaOH, incubation at 37°C for 10 min followed by neutralization with 0.1 volume of 3 M NaOAc (pH 5.5). Cleaved PCR products were then purified using a Magic PCR prep kit (Promega, Southampton, UK) followed by ethanol precipitation. All restriction enzyme (30 units) digests were performed on purified PCR products at 37°C for 1 hr in 30 μl of reaction buffer. Concentrations of purified PCR products and linearized vector (see below) were determined using a sensitive fluorimetric assay (12).

Cloning of PCR products into pT7T318U

Two-micrograms samples of pT7T318U

Figure 1 Schematic representation showing the amplimer sequences used to amplify a 385- to 388-bp fragment (dependent on position of binding of amplimers) of plasmid DNA containing a cDNA encoding bovine basic FGF (top). The positions of cleavage with the respective restriction endonuclease or UDG are indicated with arrow heads, and the cohesive ends generated are shown. The equivalent ends generated using a SacI-modified primer are shown at bottom (broken lines). Primers containing dU mimics are denoted by the comparable restriction enzyme name (roman type) followed by (U), with (U'), (U+1), (U+2) distinguished among the imperfect mimics resulting in a mismatch, a one-, or a two-base gap between overhangs, respectively.
were digested in 50 µl of the appropriate buffer containing 20 units of restriction enzymes (BamH1, PstI, SacI) for 1 hr at 37°C, and selected preparations incubated with 2.5 units of calf intestinal alkaline phosphatase (CIP, Pharmacia/LKB) in 6 µl buffer [1 M Tris (pH 8.0), 1 µl 10% (wt/vol) SDS] for 2 hr at 37°C. Both CIP-treated and untreated linearized vector samples were purified by Magic DNA purification kits (Promega) and ethanol precipitated.

Ligation of purified cohesive-ended PCR products and linearized pT7T318U vector (Pharmacia/LKB, Milton Keynes, UK), and subsequent transformation of Escherichia coli XL1 blue were performed using established protocols. In all cases, roughly equimolar amounts of purified PCR products (10 ng) and BamH1, PstI, or SacI linearized vector (50 ng) were used in each cloning experiment. Transformants were selected by ampicillin resistance.

Recombinant colonies were analyzed by insert size using restriction digestion and/or PCR amplification. Essentially recombinant colonies were dispersed in 50 µl of deionized water, and 25 µl was then used to inoculate LB media cultures while the remaining 25 µl was boiled (100°C) for 5 min and 1 µl used as template in PCR amplification under the conditions described above. Plasmids were also prepared from 1.5 ml of overnight cultures using standard alkaline lysis miniprep procedures and subject to restriction enzyme digest analysis.

RESULTS

Amplification and digestion of PCR products

All of the primer combinations indicated in Figure 1 consistently, and with roughly equivalent efficiency, amplified a predominant PCR product of the expected size (see Fig. 1) from a cDNA clone encoding bovine basic FGF (see Fig. 2A). The authenticity of the product was confirmed in all cases by restriction mapping (data not shown). Because the 5' proximal position of the dU required for cohesive end mimicry may have posed problems in terms of accessibility to excision by UDG, we monitored the loss of radioactivity from tracer amounts of 5' 32P-end-labeled primers incorporated within the PCR products following incubation with UDG or PstI. Figure 2B shows an example of the efficiency of digestion of the PCR products with PstI (1 hr, 37°C) or UDG (30 min, 37°C) followed by heat denaturation. Almost equivalent amounts of 5' 32P-labeled tracer amplimer sequences have been removed in both cases. Figure 2B also shows how unincorporated dU-containing amplimers are degraded during incubation with UDG while unincorporated restriction-site modified amplimers remain intact (as evidenced by the diffuse low-molecular-weight bands).

Cloning of UDG-generated cohesive-ended fragments

PCR products digested with restriction enzymes and/or UDG were investigated for their relative capacity to be directionally and nondirectionally cloned into restriction enzyme-linearized pT7T318U. Initial cloning experiments comparing efficiencies using heat or alkali treatment demonstrated that alkali treatment gave greater cloning efficiencies following UDG excision of dU (data not shown), attributable to the covalent cleavage at abasic sites effectively removing 5' nicked sequences from the PCR products. All data shown in Tables 1 and 2 derive from experiments performed using alkali treatment protocols following dU excision by UDG. The cloning efficiencies obtained using restriction enzyme or dU excision to generate 3' overhangs are summarized in Table 1, which also shows the number of true recombinant colonies, as determined by PCR amplification and/or restriction enzyme digestion of plasmid preparations. Comparable numbers of true recombinants were recovered following directional insertion of PCR fragments generated using PstI + BglII-modified and PstI(U + 1) + SacI(U)-modified primers. An expectedly higher recovery of true recombinant colonies was obtained following non-directional cloning of PCR products generated using SacI(U) primers. Directional cloning of both SacI(U) + PstI(U') and SacI(U) + PstI(U + 2) primer products gave a comparable number of recombinants to that obtained using UDG SacI products alone. However, only 25% of recombinants generated from PstI(U + 2) + SacI(U) primer products contained correct inserts (see Table 1, Experiment E1). The efficiency of cloning, as judged by the number of recombinants, was, however, significantly lowered in the case of all PCR products generated using PstI(U) mimics if the vector ends were pre-treated with CIP. Significantly, directional cloning of cohesive-ended PCR fragments generated using PstI and SacI(U)-modified primers demonstrated an increased number and frequency of true colonies and was unaffected by pre-treating vector ends with CIP (See Table 1, Experiments F1 and F2).

Recreating restriction sites following ligation of UDG-generated cohesive ends

As can be seen from Table 2 the ability to recreate restriction sites following ligation of UDG-generated cohesive ends to restriction enzyme-generated cohesive ends is dependent on the degree of compatibility. Thus, 100% of recombinants generated using PstI- and/or SacI(U)-modified primer products were capable of being recut using the respective restriction endonuclease. In contrast, we could detect no digestion by PstI of nine
TABLE 1 Summary of Relative Cloning Efficiencies Obtained in Cloning Experiments by Use of PCR Fragments with Cohesive Ends Generated Using Restriction Endonuclease (BglII and PstI) or UDG Digestion of Amplimers

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Amplimers useda</th>
<th>Number of coloniesb</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>PstI</td>
<td>252 (8/10)c</td>
</tr>
<tr>
<td>B1</td>
<td>SacI(U)</td>
<td>778 (9/10)c</td>
</tr>
<tr>
<td>C1</td>
<td>PstI(U')</td>
<td>662 (9/10)c</td>
</tr>
<tr>
<td>C2d</td>
<td>PstI(U')</td>
<td>25 NTc</td>
</tr>
<tr>
<td>D1</td>
<td>PstI(U + 1)</td>
<td>288 (9/10)c</td>
</tr>
<tr>
<td>D2d</td>
<td>PstI(U + 1)</td>
<td>51 NTc</td>
</tr>
<tr>
<td>E1</td>
<td>PstI(U + 2)</td>
<td>542 (5/20)c</td>
</tr>
<tr>
<td>E2d</td>
<td>PstI(U + 2)</td>
<td>114 NTc</td>
</tr>
<tr>
<td>F1</td>
<td>PstI</td>
<td>2044 (10/10)c</td>
</tr>
<tr>
<td>F2d</td>
<td>PstI</td>
<td>1716 NTc</td>
</tr>
</tbody>
</table>

Control experiments using vector alone cut with

SacI 46
SacI and BamHI 40
PstI and SacI 48
PstI and BamHI 28
PstI and SacI (followed by CIP treatment) 36
Uncut vector alone (1 ng) 1124

aSee Fig. 1 legend for amplimer nomenclature.
bTotal number of colonies following overnight incubation.
cFigures in parentheses indicate number of colonies tested positive for correct inserts by PCR amplification from plasmid miniprep.
dIn these experiments, cut vector ends were CIP treated before insertion and ligation of PCR product.
e(NT) Not tested.

Our preliminary investigations suggest that there are several ways in which the UDG excision approach outlined here may have advantages over traditional methods using restriction enzyme-generated cohesive ends. For example, restriction enzyme cleavage of PCR fragments generated using restriction site-modified primers may also cleave the PCR product at internal (non-amplimer) sites. This potential problem is eliminated using the approach outlined here. It is also possible that dU containing restriction site mimic linkers may be developed which, followed dU excision by UDG could be used to avoid this phenomenon during non-PCR-based cloning, for example, of unknown sequences by genomic or cDNA library construction. Development of vector-ettes containing dU may also allow this approach to be used to mimic restriction enzyme-generated cohesive ends with 5' overhangs.

Many restriction enzymes require that the recognition sequence be located centrally or 3' proximal within the primer for effective digestion which, in some instances, may reduce efficiency and/or specificity of the PCR amplification. The position of the dU at the

The ability of UDG to specifically cleave at positions where dU has been incorporated during PCR has been utilized for cloning, sequencing, mutagenesis, and prevention of carryover contamination. Here, we describe a cloning strategy whereby excision of a single dU appropriately positioned in the amplimer can be used to generate cohesive ends suitable for cloning into restriction enzyme-linearized vectors.

At the outset of this study we recognized that the degree of compatibility of cohesive ends generated by UDG or by restriction enzymes may be a significant factor limiting cloning efficiency. We therefore chose to mimic SacI and PstI cohesive ends, with the former representing the situation where the incorporation of dU has no effect on the original sequence (e.g., merely represents substitution of dT for dU) and the latter allowing study of cohesive ends varying in the degree of compatibility to a PstI-generated cohesive end (see Fig. 1). The data in Table 1 show that directional cloning of the PCR products can be achieved using both perfectly and imperfectly compatible overhangs. Other restriction enzymes (e.g., BglII, KpnI, HhaI, HaeIII, PvuI, SacII) that generate 3' overhangs may therefore be amenable to mimicry using dU excision by UDG, even though gaps or overlaps are introduced. The data do, however, demonstrate that imperfectly mimicked PstI cohesive ends may not be efficiently ligated if the vector ends are treated with CIP.

DISCUSSION

The ability of UDG to specifically cleave at positions where dU has been incorporated during PCR has been utilized for cloning, sequencing, mutagenesis, and prevention of carryover contamination. Here, we describe a cloning strategy whereby excision of a single dU appropriately positioned in the amplimer can be used to generate cohesive ends suitable for cloning into restriction enzyme-linearized vectors.

At the outset of this study we recognized that the degree of compatibility of cohesive ends generated by UDG or by restriction enzymes may be a significant factor limiting cloning efficiency. We therefore chose to mimic SacI and PstI cohesive ends, with the former representing the situation where the incorporation of dU has no effect on the original sequence (e.g., merely represents substitution of dT for dU) and the latter allowing study of cohesive ends varying in the degree of compatibility to a PstI-generated cohesive end (see Fig. 1). The data in Table 1 show that directional cloning of the PCR products can be achieved using both perfectly and imperfectly compatible overhangs. Other restriction enzymes (e.g., BglII, KpnI, HhaI, HaeIII, PvuI, SacII) that generate 3' overhangs may therefore be amenable to mimicry using dU excision by UDG, even though gaps or overlaps are introduced. The data do, however, demonstrate that imperfectly mimicked PstI cohesive ends may not be efficiently ligated if the vector ends are treated with CIP.

Our preliminary investigations suggest that there are several ways in which the UDG excision approach outlined here may have advantages over traditional methods using restriction enzyme-generated cohesive ends. For example, restriction enzyme cleavage of PCR fragments generated using restriction site-modified primers may also cleave the PCR product at internal (non-amplimer) sites. This potential problem is eliminated using the approach outlined here. It is also possible that dU containing restriction site mimic linkers may be developed which, followed dU excision by UDG could be used to avoid this phenomenon during non-PCR-based cloning, for example, of unknown sequences by genomic or cDNA library construction. Development of vector-ettes containing dU may also allow this approach to be used to mimic restriction enzyme-generated cohesive ends with 5' overhangs.

Many restriction enzymes require that the recognition sequence be located centrally or 3' proximal within the primer for effective digestion which, in some instances, may reduce efficiency and/or specificity of the PCR amplification. The position of the dU at the
S'proximal end of the amplified DNA presents no such recognition problem, being readily excised by UDG (see Fig. 2). We have recently used this approach to clone human apolipoprotein genomic segments ranging in size from 1.7–4.2 kb where modification of primers to contain comparable restriction sites has prevented efficient amplification (E.K. Green et al., in prep.).

Directional cloning using restriction enzymes also often requires long, and/or separate, sequential digestions (each requiring PCR product purification and tailoring of buffer composition to the particular restriction enzymes used) to maximize the yield of cohesive ends produced and minimize the degree of star activity generated. The rapid hydrolysis and relatively wide temperature and buffer activity range of UDG makes it possible to avoid these steps. UDG may simply be added to the reaction products produced and minimize the degree of star activity generated. The rapid hydrolysis of abasic sites, following incubation with UDG, substantially increases the subsequent availability of cohesive ends for ligation, thus affecting cloning efficiency, consistent with previous studies on the specificities and kinetics of dU excision by UDG. (18,19)

Potential advantage can further accrue from how the mimics behave following ligation. DNA segments joined together via ligation of restriction enzyme-generated cohesive ends retain the capacity to be recut by that enzyme at the original junction, unless subsequently modified, for example, by methylation. Our data show that using UDG mimics, it is possible to balance cloning efficiency and accuracy with the ability to recreate or abolish the original restriction site following successful ligation (see Tables 1 and 2). This facet of the UDG-based strategy may have particular value in constructing large or chimeric genes using PCR subfragments where loss of the recognition sequence following ligation is an advantage.

ACKNOWLEDGMENTS

C.S. is supported by a grant from the West Midland Hospitals Regional Endowment Fund (UK) awarded to Dr. A. Logan. We are also grateful to Drs. Ann Logan and Ralph Rapley for constructive discussions, and Elaine K. Green for help with primer design and PCR amplifications.

REFERENCES

Generation of cohesive ends on PCR products by UDG-mediated excision of dU, and application for cloning into restriction digest-linearized vectors.

C Smith, P J Day and M R Walker

Genome Res. 1993 2: 328-332
Access the most recent version at doi:10.1101/gr.2.4.328

References

This article cites 18 articles, 3 of which can be accessed free at: http://genome.cshlp.org/content/2/4/328.full.html#ref-list-1

License

Email Alerting Service

Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or [click here](http://genome.cshlp.org/subscriptions).

To subscribe to *Genome Research* go to: http://genome.cshlp.org/subscriptions

Copyright © Cold Spring Harbor Laboratory Press