“i can
go where the biology
takes me.”

“In research, one discovery leads to another which leads...well, who knows where? The Illumina Genome Analyzer gives me the technology to follow almost any path. Only with this system could we create the most detailed and integrated epigenome map to date for any species.”

Dr. Brian Gregory
Postdoctoral Fellow
The Salk Institute for Biological Studies

Study the genome. Epigenome. Transcriptome. All at single base-pair resolution. Do more, and do it better, with the Illumina Genome Analyzer.

Next-gen Sequencing
Now

www.illumina.com/sequencingGR
CSH Protocols and BioSupplyNet Are Merging to Better Serve Your Laboratory Needs!

- New CSH Protocols functionality is being added to BioSupplyNet
- SAVE TIME! No need to search through stacks of laboratory manuals and numerous websites
- Over 20,000 products and supplies listed (indexed by type and/or by company)
- Over 6,500 prominent suppliers participating and the number continues to grow
- Searching is FAST and EASY
- NO REGISTRATION necessary

In addition to searching for products, Scientists can quickly:

- Get immediate inside info about new products and special deals
- Find kits to perform research techniques
- Download free featured protocols from Cold Spring Harbor Laboratory Press manuals
- Visit our Career Center to search and post job listings
- Search CSH Protocols for up-to-date laboratory methods
- Order Catalogs
- Sign up for Newsletters

Visit BioSupplyNet.com Today!
The sugar chains of cells—known collectively as glycans—play a variety of impressive, critical, and often surprising roles in biological systems. Glycobiology is the study of the roles of glycans in the growth and development, function, and survival of an organism. Glyco-related processes, described in vivid detail in the text, have become increasingly significant in many areas of basic research as well as biomedicine and biotechnology.

This new edition of *Essentials of Glycobiology* covers the general principles and describes the structure and biosynthesis, diversity, and function of glycans and their relevance to both normal physiologic processes and human disease. Several new chapters present significant advances that have occurred since the publication of the first edition. Three sections of note describe organismal diversity, advances in our understanding of disease states and related therapeutic applications, and the genomic view of glycobiology. “Glycomics,” analogous to genomics and proteomics, is the systematic study of all glycan structures of a given cell type or organism and paves the way for a more thorough understanding of the functions of these ubiquitous molecules.

The first edition of *Essentials of Glycobiology* represented also a notable experiment in publishing, as it became one of the first electronic textbooks. And, now, in recognition of its wide audience and the changing ways in which researchers and students learn and access information, the new edition of *Essentials* will be made available online simultaneously with the print edition. This novel experiment is the result of the collaborative efforts of the Cold Spring Harbor Laboratory Press, the National Center for Biotechnology Information, and the editors of the book. Written and edited by glycobiologists with experience in teaching and in research, this volume will be an invaluable resource, both for students and for established investigators in fields such as developmental biology, cell biology, neuroscience, immunology, and biochemistry who require a complete yet concise introduction to this burgeoning field.

Published in October 2008, 784 pp., illus., glossary, study guide, index
Hardcover $158
ISBN 978-087969770-9

Advance praise for the Second Edition:

“The basic principles of glycobiology are clearly articulated in this volume, and the roles of complex carbohydrates in disease are an important read for all biomedical scientists.”
—Peter Agre, M.D., Nobel Laureate in Chemistry, 2003

“*Essentials of Glycobiology* is a major resource for understanding these post-translational biochemical reactions that affect the function and fate of proteins produced by the genes that are profoundly changed by their added sugars.”
—Baruch S. Blumberg, Nobel Laureate in Medicine, 1976

“The second edition of *Essentials of Glycobiology*, superbly printed and illustrated, develops in simple and absolutely precise terms the complicated intricacies of glycobiology. I would have killed to get this encyclopedic treatise 40 years ago when I was working my way through this field.”
—Edmond H. Fischer, Nobel Laureate in Medicine, 1992
Cellular Imaging & Analysis

NEB introduces SNAP-tag™ and CLIP-tag™ protein labeling systems. These innovative technologies provide simplicity and extraordinary versatility to the imaging of mammalian proteins \textit{in vivo}, and to protein capture experiments \textit{in vitro}. The creation of a single genetic construct generates a fusion protein which, when covalently attached to a variety of fluorophores, biotin, or beads provides a powerful tool for studying the role of proteins in living and fixed cells.

\begin{itemize}
\item **Advantages:**
\begin{itemize}
\item **Versatile** - Compatible systems enable dual labeling
\item **Flexible** - Multiple fluorophores allow for choice & flexibility
\item **Innovative** - A range of applications is possible with a single construct
\end{itemize}
\end{itemize}

Live COS-7 cells transiently transfected with pSNAPm-Tubulin. Cells were labeled with SNAP-Cell TMR-Star (green pseudocolor) for 30 minutes and counterstained with Hoechst 33342 (blue) for nuclei.

\textbf{SNAP-tag Technology:} SNAP-tag (gold) fused to the protein of interest (blue) self labels releasing guanine.
Until recently, a small number of model organisms has been the focus of most research in molecular, cellular, and developmental biology. But in the last few years, due in part to increased interest in questions of evolution, technical advances in selectively altering gene expression patterns, and the reduced costs of genome sequencing, the range of organisms used for research is greatly expanding. *Emerging Model Organisms, Volume 1,* introduces the reader to this new generation of model organisms, providing a diverse catalog of potential species useful for extending research in new directions. In this volume leading experts provide chapters on 23 emerging model systems, ranging from bat and butterfly to cave fish and choanoflagellates; cricket and finch to quail, snail, and tomato. Subsequent releases of the *Emerging Model Organisms* series, already in preparation, will focus on additional species.

Published in November 2008, 592 pp., illus., appendix, index

Hardcover $158
Paperback $89
ISBN 978-087969826-3
ISBN 978-087969872-0

CONTENTS

1. The Choanoflagellates: Heterotrophic Nanoflagellates and Sister Group of the Metazoa
 N. King, S.L. Young, M. Abedin, M. Carr, and B.S.C. Leadbeater

2. Dictyostelium discoideum: The Social Ameba
 P. Gautet, P. Fey, and R. Chisholm

3. The Moss Physcomitrella patens: A Novel Model System for Plant Development and Genomic Studies

4. The Genus *Antirrhinum* (Snapdragon): A Flowering Plant Model for Evolution and Development
 A. Hudon, J. Critchley, and Y. Erasmus

5. Tomato (Solanum lycopersicum): A Model Fruit-bearing Crop
 T. Kimura and N. Sinha

6. The Demosponge Amphimedon queenslandica: Reconstructing the Ancestral Metazoan Genome and Deciphering the Origin of Animal Multicellularity

7. Comb Jellies (Ctenophora): A Model for Basal Metazoan Evolution and Development
 K. Pang and M.Q. Martindale

8. Planarians: A Versatile and Powerful Model System for Molecular Studies of Regeneration, Adult Stem Cell Regulation, Aging, and Behavior
 N.J. Otero, C.L. Nicolas, D.S. Adams, and M. Levin

9. The Snail *Ilyanassa*: A Reemerging Model for Studies in Development

10. Helobdella (Leech): A Model for Developmental Studies
 D.A. Weisblat and D.-H. Kuo

 R. Rae, B. Schlager, and R.J. Sommer

12. The African Butterfly *Bicyclus anynana*: A Model for Evolutionary Genetics and Evolutionary Developmental Biology
 P.M. Brakefield, P. Beldade, and B.J. Zwaan

13. The Two-spotted Cricket *Gryllus bimaculatus*: An Emerging Model for Developmental and Regeneration Studies
 T. Mito and S. Noji

14. The American Wandering Spider *Ctenusius salei*: A Model for Behavioral, Evolutionary, and Developmental Studies
 N.-M. Popic, M. Schoppmeier, and W.G.M. Damen

15. The Crustacean *Parhyale hawaiensis*: A New Model for Anthropod Development

16. The Sea Lamprey *Petromyzon marinus*: A Model for Evolutionary and Developmental Biology
 N. Nikitina, M. Bronner-Fraser, and T. Sunka-Spengler

17. The Dogfish *Scyliorhinus canicula*: A Reference in Jawed Vertebrates

18. The Genus *Polypterus* (Bichirs): A Fish Group Diverged at the Stem of Ray-finned Fishes (Actinopterygii)
 M. Takeuchi, M. Okahe, and S. Aizawa

 R. Borowsky

20. Darwin’s Finches: Analysis of Beak Morphological Changes During Evolution
 A. Alzhanov

 G. Peynier, D. Hess, and R. Lanford

22. The Short-tailed Fruit Bat *Carollia perspicillata*: A Model for Studies in Reproduction and Development
 J.J. Rasweiler IV, C.J. Cretekos, and A.L. Keyte

23. Opossum (*Monodelphis domestica*): A Marsupial Developmental Model
 A.L. Keyte and K.K. Smith

General Cautions
Appendix
Index

www.cshlpress.com