Inbred mouse strains have been maintained for more than 100 years, and they are thought to be a mixture of four different mouse subspecies. Although genealogies have been established, female inbred mouse phylogenies remain unexplored. By a phylogenetic analysis of newly generated complete mitochondrial DNA sequence data in 16 strains, we show here that all common inbred strains descend from the same *Mus musculus domesticus* female wild ancestor, and suggest that they present a different mitochondrial evolutionary process than their wild relatives with a faster accumulation of replacement substitutions. Our data complement forthcoming results on resequencing of a group of priority strains, and they follow recent efforts of the Mouse Phenome Project to collect and make publicly available information on various strains.

[Supplemental material is available online at www.genome.org. The sequence data from this study have been submitted to GenBank under accession nos. EF108330–EF108345.]
tions have a reasonably well documented history, with no inclusion of foreign DNA, variation that occurs can be generated only by mutation. Moreover, study of mice mitochondrial phylogenies may become helpful in clarifying differences that have been reported between mutation rates estimated from pedigrees and substitution rates calculated from phylogenies (Howell et al. 2003; Ho et al. 2005; Ho and Larson 2006).

Two main issues were addressed while performing this work: (1) validation of published genealogies and clarification of the maternal line origin of common inbred strains and (2) evolutionary analysis of inbred strains. It was developed by focusing on 16 selected strains that are part of the Mouse Phenome Project (Bogue 2003), which aims to enhance the resources available for laboratory mice by collecting phenotypic and genotypic characteristics of these animals and making them publicly available through a Web-accessible database. These data may ultimately help researchers track down the genes involved in particular phenotypes, by allowing association of phenotypes with genotypes for each strain. A set of 40 priority strains has been established, and for 15 of them the complete genome is now being sequenced (Pearson 2004). By performing the mtDNA characterization of these 15 strains (plus C57BL/6), we are also contributing to this project.

Results

mtDNA diversity

We have sequenced the complete mtDNA of 32 mice belonging to 16 inbred strains (two of each strain): 12 common inbred (129S1/SvImJ, A/J, AKR/J, BALB/cByJ, BTBR T+tf/J, C3H/HeJ, C57BL/6J, DBA/2J, FVB/NJ, KK/HJ, NOD/LtJ, NZW/LacJ) and four wild-derived inbred strains, each representing a different subspecies (CAST/EiJ, MOLF/EiJ, PWD/PhJ, and WSB/EiJ) Out of the 16 strains sequenced we obtained 12 different haplotypes. For all inbred strains, including the wild-derived, sequencing of the second animal of the same strain always confirmed the first sequence (haplotype) obtained.

We combined our data with 13 complete sequences available online, giving a total of 20 different haplotypes consisting of (1) 11 common inbred strains plus (2) two more divergent (NZB and MilP) common inbred haplotypes, (3) two cell lines, and (4) five wild-derived inbred strains’ haplotypes. The mtDNAs of all 11 common inbred strains were very similar. Only 15 substitutions were detected in the 16,299 mtDNA nucleotides, 14 inside genes and one in a ribosomal RNA (Supplemental Table 1). No substitutions were observed in the control region. Insertions in transfer RNA genes were also observed in sites previously reported as highly polymorphic (Bayona-Bafaluy et al. 2003; Supplemental Table 1). This similarity between common inbred strains has already been reported for some of these strains (Bayona-Bafaluy et al. 2003). However, we have extended the number of strains and included mice from different groups (Beck et al. 2000): A (Swiss mice), B (Castle’s mice), C (strains derived from China and Japan), and E (C57-related strains).

For strains C3H and C57BL/6, we obtained different haplotypes from the published ones. C3H/HeJ differs from C3H/He (Kiebish and Seyfried 2005) at position 8889, and the two C57BL/6 sequences differ at position 11,780. Based on the data of Kiebish and Seyfried (2005) and on a personal communication with J.A. Enríquez (Universidad de Zaragoza, Spain), we concluded that the substitution at 11,780 was probably an artifact, and will therefore be ignored, while that at 8889 was likely real. All other common inbred strains that we could compare with published data matched the reported sequences.

The four strains derived from wild mice that we sequenced are highly divergent from each other, and three of them also diverge from the reference C57BL/6 sequence: CAST (M. m. castaneus) differs from the reference in 377 positions, PWD (M. m. musculus) and MOLF differ (M. m. molossinus) in 386 positions. The MOLO strain (M. m. molossinus) mtDNA that was already reported (Akimoto et al. 2005) differed from MOLF in 15 sites. WSB, the M. m. domesticus representative, shows only 10 differences from the reference.

Phylogenetic analyses

We estimated coalescence times for these branches assuming a divergence time between Mus and Rattus of 12 million yr (palaeontological data from Jacobs et al. 1989; Jaeger et al. 1986 in Michaux et al. 2002; Suzuki et al. 2004). The results date the split between the three main groups at 371,000 ± 91,300 yr ago, consistent with published mtDNA data that place the divergence between Mus musculus subspecies between 0.1 Mya (based on
mtDNA phylogeny and evolution of lab mouse strains

Table 2. Divergence times for the major groups of strains

<table>
<thead>
<tr>
<th>Strains</th>
<th>Divergence times (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rattus/Mus</td>
<td>12,000,000</td>
</tr>
<tr>
<td>Mus musculus subspecies</td>
<td>371,000 ± 91,000</td>
</tr>
<tr>
<td>NZB, MiIP/WSB, common inbred</td>
<td>75,800 ± 14,500</td>
</tr>
<tr>
<td>WSB/common inbred</td>
<td>8900 ± 5200</td>
</tr>
<tr>
<td>AKR, BTBR, DBA/KK</td>
<td>3000 ± 1400</td>
</tr>
<tr>
<td>AKR, BTBR, DBA/CS7BL/6</td>
<td>3000 ± 1400</td>
</tr>
<tr>
<td>C3H/He/C3H/He</td>
<td>2200 ± 1400</td>
</tr>
<tr>
<td>NZW, SAMR1/SAMP</td>
<td>1800 ± 1500</td>
</tr>
<tr>
<td>SAM1/SAMP8</td>
<td>490 ± 120</td>
</tr>
</tbody>
</table>

Table 1. Substitution rates for the different positions of the mtDNA molecule, calculated based on different groups of mouse strains

<table>
<thead>
<tr>
<th>Substitution rates (substitutions per site per yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat, wild-derived, NZB, MiIP, CS7BL/6</td>
</tr>
<tr>
<td>Codon position 1</td>
</tr>
<tr>
<td>Codon position 2</td>
</tr>
<tr>
<td>Codon position 3</td>
</tr>
<tr>
<td>tRNAs</td>
</tr>
<tr>
<td>rRNAs</td>
</tr>
<tr>
<td>Control region</td>
</tr>
<tr>
<td>Overall</td>
</tr>
</tbody>
</table>

Discussion

The maximum likelihood analysis of the wild-derived strains did not permit the establishment of the first split among the three major subspecies, and so we present a tree with a tricotomy at the base (Fig. 1): (1) M. m. castaneus, (2) M. m. musculus, and (3) M. m. domesticus. Not surprisingly, this ambiguity had already been unresolved in previous analyses with mitochondrial genes Cyt b and 12S (Lundrigan et al. 2002), while analyses with combined nuclear and mitochondrial genes disagree on which subspecies was the first to diverge (Lundrigan et al. 2002; Suzuki et al. 2004).

Our results from complete mtDNA sequences agree with others based on particular genes (Lundrigan et al. 2002) in placing M. m. molossinus closer to M. m. musculus than to other subspecies. This confirms not only that M. m. molossinus is a hybrid but also that its mtDNA shares a recent common ancestor with M. m. musculus.

A single female origin for lab mice strains

The extreme similarity among mtDNAs of the different common inbred strains is well illustrated by the small number of polymorphisms that were found (Fig. 2; Supplemental Table 1). The accumulation of polymorphisms agrees with published genealogies (Beck et al. 2000) and the history (Eppig et al. 2005) of the strains, particularly when individual groups (Swiss mice, Castle’s mice, strains derived from China and Japan, and C57-related strains) of strains are considered. Small deviations from the published genealogical trees can generally be justified by outbreeding somewhere back in the history of the strain (each strain is discussed in detail in the Supplemental data).

Genealogies do not suggest any relationship between the different groups (except for C57-related mice and Castle’s mice, which both descend from Abbie Lathrop’s stocks). Our results show, however, that all the common inbred strains appear clustered in the network, irrespectively of the group to which they belong. This finding suggests a common origin for all analyzed groups of common inbred strains. Furthermore, the fact that, in the phylogenetic tree, common inbred strains appear clustered with the M. m. domesticus-derived strain, and far from representatives of other subspecies, shows that the common mitochondrial...
Different mtDNA evolution in wild and inbred strains

The substitution rates calculated based on wild and inbred mice data vary depending on the position. Third codon positions, unlike second positions, show a higher substitution rate probably because degeneracy of the genetic code makes these positions less prone to selective pressure: A change in a third position will probably not replace the coded amino acid. Intriguingly, when analyzing the substitutions that occur in the inbred strains (Supplemental Table 1), we observe a low frequency (4/14) of substitutions involving third codon positions, and an even lower number (3/14) of synonymous variants. The same is observed for the WSB strain. However, this could be a consequence of performing the comparisons relative to an inbred strain (C57BL/6). Most (13) of the 15 substitutions found among inbred strains are transitions, and the overall transition/transversion rates were higher for all positions in the analysis with common inbred strains than in the one including the rat (data not shown). This higher accumulation of transversions in the wild was expected given the very old Mus/Rattus divergence when compared with the inbred strains.

Although data on RFLPs have placed the divergence inside the Mus musculus species 1–2 million yr ago (Yonekawa et al. 1981), long before the ~370,000 yr ago that we obtained, our estimated coalescence times for the wild-derived strains fall within values obtained more recently with other markers (Suzuki et al. 2004). The estimates of coalescence times of the inbred strains, however, were much higher than the known divergence of the strains. It is known that the common inbred strains were first established at the beginning of the 20th century, but our estimate for coalescence of the inbred strains is ~3000 yr ago. Even if, as is suggested by our network, all the common inbred strains (Castle’s mice, Swiss mice, strains derived from colonies from China and Japan, and C57-related strains) had the same ancestor earlier than the 20th century, in Japanese fancy mice (17th century, Rader 2004), values obtained in our estimates would still be very high. Furthermore, the divergence times for the splits between the different inbred strains are also much older in our estimates than what is documented.

Taken together, these estimates show a faster mtDNA evolution in inbred than in wild mice with a higher accumulation of replacement substitutions. Three hypotheses may account for these discrepancies: (1) the calibration point that we used (12 million yr for the Mus/Rattus divergence) is too distant relative to the young splits that we are trying to date; (2) mtDNA evolution in inbred strains, with such controlled conditions and restricted crosses, occurs faster than in wild environments; or (3) there are differences in generation times of inbred and wild strains.

The issue of the calibration points has been under debate in recent publications, and it has been suggested that substitution rates extrapolated across different time scales result in invalid date estimates (Ho and Larson 2006). In our case, using a 12-million-yr calibration point for a 100-yr-old estimate might be inappropriate. Since it was not possible to find a more suitable calibration point (paleontological data after the Mus/Rattus split are absent), we tried to overcome this limitation by assuming that our estimate for the Mus musculus divergence (~370,000 yr ago) can be distinguished by the nucleotide at position 8889. (2) A polymorphism has occurred in the split between two substrains of C3H. C3H/He and C3H/HeJ can therefore be distinguished by the nucleotide at position 8889. (2) A polymorphism has occurred in the split between two substrains of C3H. C3H/He and C3H/HeJ can therefore be distinguished by the nucleotide at position 8889.
presented mtDNA diversity. Also, the fact that the coding region substitution rates that we obtained from the wild strain data are of the same order of magnitude as the values obtained for human mtDNA may suggest that our estimates for the substitution rates are not too far from the truth.

Therefore, a higher substitution rate in inbred mice may still stand, despite this rough time estimate. Curiously, mice cell lines included in our analyses have accumulated a similar number of substitutions to that observed for mouse inbred strains, although it had been reported that relaxation of negative selection resulted in a high substitution rate in HeLa cell lines, when compared with phylogenetically derived divergence of mtDNAs (Herrnstadt et al. 2002). Evolutionary rates of inbred mouse mtDNA appear to be closer to cell lines than to wild mice, suggesting that laboratory controlled conditions with strict bottlenecks may also account for the higher substitution rate.

A higher substitution rate could also be apparent if generation times of wild mice are longer than in inbred strains. It is possible that mice breeders cross mice before they would mate in the wild. For C57BL/6 mice it is documented (Genetic Background Resource Manual 2006, The Jackson Laboratory, http://jaxmice.jax.org/literature/manuals/mouse_genetics_resource_manual.pdf) that ~120 generations have passed in the period from 1920 to 1970, resulting in 2.4 generations per yr, but other inbred strains may have shorter generation times. Wild mice are commonly assumed to have about two generations per yr. This difference could explain a slightly higher substitution rate, but it does not explain the high frequency of replacement substitutions.

Final remarks

Although the history of inbred mice reports at least three geographically separate origins for inbred mice, our data permit us to conclude that all common inbred strains that are now being resequenced originate from the same female ancestor, a M. m. domesticus mouse. Phylogenetic analyses suggest that two different processes of mtDNA evolution may occur, depending on the environment: one in wild mice that results in a substitution rate similar to the one obtained for human mtDNA, and the other in the controlled environment of the laboratory strains, which gives rise to a faster evolution and a higher accumulation of replacement substitutions.

Methods

Samples and sequencing

Livers from 32 mice belonging to 16 inbred strains (129S1/SvImJ, A/J, AKR/J, BALB/cByJ, BTBR T+tf/J, C3H/HeJ, C57BL/6J, DBA/2J, FVB/NJ, KK/HJ, NOD/LtJ, NZW/LacJ, CAST/EiJ, MOLF/EiJ, PWD/PhJ, and WS/BalEiJ) were provided as part of a collaboration with the Mouse Phenome Project (The Jackson Laboratory, Bar Harbor, ME). All mice were male and of about the same age. We sequenced DNA from two animals of each strain, belonging to proximate generations. Potential differences that could have been detected between the two mice would result in one of the following conclusions: (1) there was a sequencing error and/or contamination, (2) the strain was misidentified, or (3) the strain presented mtDNA diversity.

We extracted DNA from livers following a standard phenol-chloroform protocol (digested with protease K in buffer TE containing 0.5% SDS, purified with phenol-chloroform-isoamyl alcohol, and precipitated with ethanol). We amplified 34 overlapping fragments of ~500 bp covering the entire mtDNA molecule, with the appropriate oligodeoxynucleotides and annealing temperatures (Supplemental Table 2). We purified the PCR products using Microspin S-300 HR columns (Amersham Biosciences), according to the manufacturer’s specifications. Sequence reactions were carried out using the Big-Dye Terminator Cycle Sequencing Ready Reaction kit (AB Applied Biosystems) with one primer (Supplemental Table 2), in forward and/or reverse directions. We purified the samples with Sephadex G-50 DNA Grade f (Amersham Biosciences) and ran them in an automatic sequencer ABI 3100 (AB Applied Biosystems). Sequences were compared using C57BL/6j as the reference sequence.

Construction of phylogenetic trees

For phylogenetic analyses, we combined our data with 13 complete sequences available online, totaling 20 different haplotypes. We aligned the mtDNA complete sequences with ClustalW (Chenna et al. 2003) and constructed a maximum parsimony phylogenetic network (NETWORK 4.1.1.2, Bandelt et al. 1995) of all strains, in order to suggest a number of possible branching orders.

We then performed maximum likelihood (PAML 3.15; Yang 1997) analyses using the rat (Rattus norvegicus) mitochondrial sequence as an outgroup, and assuming the HKY85 mutation model. Site heterogeneity was allowed via a gamma distribution of rates. Likelihood ratio tests were performed to test different models, namely: (1) to decide on the most likely branching order, (2) to decide on whether or not a uniform molecular clock was appropriate, and (3) to test whether different mutation parameters should be allowed for different genes. When the differences were not significant, the simpler model was chosen. The standard errors on time estimates and mutation rates come directly out of the ML analysis. The covariance matrix of model parameter estimates was derived from the second derivative of the log likelihood evaluated at the likelihood maximum. The standard errors then follow by the delta method.

Due to the difficulty in aligning the D-loop of rat and mouse sequences, the first analysis did not include the control region. After the tree was established, and because of the difference in evolutionary scale between the divergence of wild and inbred strains, we redid the analysis including only (1) the rat; (2) the wild-derived inbred strains; (3) two common inbred strains reported to be more divergent than the others, NZB and MilP; and (4) the C57BL/6 strain, as a representative of all other common inbred strains. Assuming from paleontological data (Jacobs et al. 1989; Jaeger et al. 1986 in Michaux et al. 2002; Suzuki et al. 2004) that the Mus/Rattus divergence occurred 12 million yr ago, we determined substitution rates and coalescence times for all the branches in the tree. We performed a separate maximum likelihood analysis excluding the rat sequence and including all common inbred strains, but considering the whole molecule (including the control region). Assuming that the divergence time of the Mus musculus subspecies calculated in the previous tree was correct, we recalculated substitution rates and coalescence times separately for this tree and compared the results. The two separate phylogenetic analyses allowed us to compare results obtained with and without the common inbred strains and to reduce the amount of difference in evolutionary scale of the strains used in each case.

We also constructed a maximum parsimony phylogenetic network including data from the complete mtDNAs from all common inbred strains and the M. m. domesticus representative (WSB). This summarizes all sequence data and illustrates the ex-
treme lack of variation among the different common inbred strains.

Accession numbers
The published complete mtDNA sequences used in the analyses are available in GenBank, accession nos. AB042432, AB042523, AB042524, AB042809, AB049357, AJ489607, AJ512208, AY172335, AY139599, L07095, and L07096 (Bayona-Balafuy et al. 2003). AY464499 (Moreno-Loshuertos et al. 2006), AY767564 (Akimoto et al. 2005), and DQ106412 (Kiebish and Seyfried 2005). The results have been submitted to the Mouse Phenome Database (http://www.jax.org/phenome) as part of the project MPD: 202 (Goios et al. 2006).

Acknowledgments
This work was partially supported by Fundação para a Ciência e a Tecnologia through a research grant to A. G. (SRF/BD/16518/2004) and by Programa Operacional Ciência, e Inovação 2010 (POCI 2010), VI Programa-Quadro (2002–2006).

References
Akiyama et al.

Goios et al.

treme lack of variation among the different common inbred strains.

Accession numbers
The published complete mtDNA sequences used in the analyses are available in GenBank, accession nos. AB042432, AB042523, AB042524, AB042809, AB049357, AJ489607, AJ512208, AY172335, AY139599, L07095, and L07096 (Bayona-Balafuy et al. 2003). AY464499 (Moreno-Loshuertos et al. 2006), AY767564 (Akimoto et al. 2005), and DQ106412 (Kiebish and Seyfried 2005). The results have been submitted to the Mouse Phenome Database (http://www.jax.org/phenome) as part of the project MPD: 202 (Goios et al. 2006).

Acknowledgments
This work was partially supported by Fundação para a Ciência e a Tecnologia through a research grant to A. G. (SRF/BD/16518/2004) and by Programa Operacional Ciência, e Inovação 2010 (POCI 2010), VI Programa-Quadro (2002–2006).

References
Akiyama et al.

Goios et al.
mtDNA phylogeny and evolution of laboratory mouse strains

Ana Goios, Luísa Pereira, Molly Bogue, et al.

Genome Res. 2007 17: 293-298 originally published online February 6, 2007
Access the most recent version at doi:10.1101/gr.5941007

Supplemental Material
http://genome.cshlp.org/content/suppl/2007/02/07/gr.5941007.DC1

References
This article cites 36 articles, 8 of which can be accessed free at:
http://genome.cshlp.org/content/17/3/293.full.html#ref-list-1

License

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.

To subscribe to *Genome Research* go to:
http://genome.cshlp.org/subscriptions

Copyright © 2007, Cold Spring Harbor Laboratory Press